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Abstract

Privacy is a value shared by most human societies. The work presented here
is inspired by this value and is concerned with methods by which it may be
achieved. In a world where we increasingly make use of information systems
amenable to surveillance, privacy is no longer an inherent assumption; it has
becomes a property that must be explicitly designed.

In this thesis we examine the background and motivation for privacy and
how this goal may be achieved by use of systems that provide anonymity. We
examine the underlying features of such systems, the variety of strategies that
may be employed to achieve this aim, and the limitations of these methods.

We employ a definition of anonymity based on various applications of
random choice to introduce unpredictability into the sequences of observable
events created by the exchange of messages between actors in communicating
systems. This leads to a characterisation of anonymity systems according
to the fundamental mechanism that they employ to maximise this unpre-
dictability.

The characterisation that we propose leads us to identify four fundamen-
tal anonymity strategies, corresponding to known mechanisms that introduce
randomness in communicating processes. These strategies form a classifica-
tion applicable to all anonymity systems, which allows us to consider in iso-
lation the separate strategies for achieving anonymity. Taking this approach
we show that each fundamental strategy is individually sufficient to provide
anonymity to communicating entities.

We analyse the anonymity strategies identified in the model through a
simulation-based approach, and employ an information theoretic quantifi-
cation to compare the anonymity provided by each type of system. The
fundamental strategies are simulated both individually and as part of larger
networks, and are compared with respect to the effectiveness of each approach
in confusing an observer’s ability to link communicating actors. Finally, we
demonstrate that combining strategies in a single system can improve anon-
ymity beyond that of individual strategies.

Our results show the relative effectiveness of a range of anonymity systems
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at their most fundamental level, and make use of a quantification method
that is applicable to any anonymity system based on the communication of
messages between actors.
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Chapter 1

Introduction

“Nec vixit male qui natus moriensque fefellit.”
(Not a bad life is that of one who is born and dies in obscurity)1

– Horace, Epistles, I, 17, 10 (c.20 BCE)

To avoid discrimination against, or abuse of, users of communicating
systems it is sometimes necessary to prevent their activities from being made
public. This may often be achieved by the use of protocols that provide
secrecy of transaction data, however in a number of important cases it is
necessary for the identities of the communicating parties to be obscured.

In certain situations the use of a particular system may be incriminating.
Certain sources of information may be censored or viewed unfavourably by
observing parties. Other technologies with both legitimate and illegitimate
uses, while legal in themselves, may be regarded as suspicious. In such cases,
legitimate users may desire privacy to prevent assumptions of guilt by third
parties.

It is also the case that users may not wish their participation in certain
activities to be made known. In the modern world, public discussions are
frequently archived indefinitely and made widely accessible. Users taking
part in such discussions may wish to avoid having their participation known
in order to avoid associating themselves with particular viewpoints or with
an interest in certain topics.

In such cases, a useful and effective method for protection of the user is
to sever the link between a user’s identity and their observable behaviour in
the system—to make the user anonymous.

1This quote, often attributed to Cicero, is normally translated as “Nor has he spent
his life badly who has passed it in privacy.” The more literal translation shown here is our
own.
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A variety of methods to achieve the goal of anonymity have been proposed
and implemented. Public awareness of the growing level of surveillance under
which we live is increasing, and approaches aimed at regaining the privacy
that has previously been an assumed part of life are beginning to emerge. De-
spite this, the level of rigorous design and verification work in these systems
has been low compared to that of equivalent approaches towards security
in general. As a result many deployed systems have been shown to contain
serious flaws, and the level of anonymity that they provide is imperfectly
understood.

In this thesis we examine anonymity as a property of systems, and explore
the methods that can be used to achieve this property, We identify similari-
ties between fundamental approaches to providing anonymity, allowing us to
classify and analyse anonymity systems. These analyses provide insight into
the design of future systems that support the anonymity, and consequently
the privacy, of those individuals that use these systems.

1.1 Privacy

The desire for privacy motivates much research into anonymity systems. An-
onymity provides a mechanism by which an individual may render their ac-
tions free from observation, and thus protect the privacy of their actions.

The notion of privacy has been discussed at least as far back as Aristotle
(384–327 BCE), who defined the separate spheres of public life: ‘πολις’ (polis,
city) and private life ‘οικος’ (oikos, home). The importance of these concepts
is illustrated by the derivation from them of the English words politics and
economics. Undoubtedly, Aristotle was not the first to elucidate these ideas.

In Britain, privacy has arguably been part of the law since 1361 with
the adoption of the Justices of the Peace Act under the reign of Edward
III. This act included punishments for “peeping toms” and eavesdroppers,
themselves derogatory terms that reflect the already negative view held by
society towards those who invade the privacy of others.

Despite this early recognition of personal privacy, privacy as an indepen-
dent right has been explicitly recognised only in the past 150 years. One of
the first extant definitions was made by the United States Supreme Court
Justice Louis Brandeis and lawyer Samuel Warren (Brandeis and Warren,
1890), who examined the right to privacy as a natural extension of the in-
dividual right to liberty. They stated that “liberty” as a right had initially
been enforced with respect to preventing physical assault, but that as newer
business models and media coverage started to have significant effects in so-
ciety, intrusion into private lives for public consumption became of concern
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to many, and the ideal of liberty was necessarily extended to include un-
fair intervention into aspects of a person’s life that could be embarrassing or
dangerous if publicised:

“Gossip is no longer the resource of the idle and of the vicious, but
has become a trade, which is pursued with industry as well as effron-
tery... The intensity and complexity of life, attendant upon advancing
civilisation, have rendered necessary some retreat from the world, and
man, under the refining influence of culture, has become more sensitive
to publicity, so that solitude and privacy have become more essential
to the individual; but modern enterprise and invention have, through
invasions upon his privacy, subjected him to mental pain and distress,
far greater than could be inflicted by mere bodily injury.”

– (Brandeis and Warren, 1890)

In reference to earlier work by a Michigan Supreme Court Justice (Cooley,
1888), Brandeis and Warren define privacy as “the right to be let alone”. This
concept is still fundamental to almost all legal definitions of personal privacy.

Real interest in privacy, however, appears to have begun only in the sec-
ond half of the twentieth century. The United Nations Universal Declaration
of Human Rights embodies the right to privacy in its twelfth article:

“No one shall be subjected to arbitrary interference with his privacy,
family, home or correspondence, nor to attacks upon his honour and
reputation. Everyone has the right to the protection of the law against
such interference or attacks.”

– (United Nations, 1948)

Similarly, the International Covenant on Civil and Political Rights (IC-
CPR, 1997), a section of the International Bill of Rights adopted to expand
on and clarify the Universal Declaration of Human Rights, reiterates the
fundamental nature of privacy as a right to which humans are entitled.

Both the European Union and the United States have measures to protect
privacy (European Union, 1998; United States Department of Commerce,
2004), however these rights are still emerging and in a state of constant
alteration.

In British law, the first explicit electronic privacy legislation was the 1984
Data Protection Act (HMSO, 1984). This act, superseded by the 1998 Act
of the same name, regulates the uses to which data processed by automatic
equipment may be put. The legislation places strict limitations on individuals
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who store the personal data of third parties, requiring that any information
is subject to a number of “data protection principles”. These principles
include the right of the subject to inspect any stored data, and the duty of
the holder of the information to provide adequate technical protection for
such data. The holder of the data is also obliged to ensure that the data
is not used for purposes other than those for which the data was originally
collected, unless such a use has been agreed to by the data subject.

The British 1998 Data Protection Act (HMSO, 1998) implements the 1998
European Union Directive on Data Protection (European Union, 1998). This
directive, enforced across the European Union’s economic sphere, includes the
principle that personal data must not pass to countries outside the European
Union that do not also implement adequate data protection measures as
defined by the directive. This has caused some difficulties with the passage of
data to the United States, which relies on corporate self-regulation (United
States Department of Commerce, 2004) rather than legislation to protect
privacy, and thus does not meet the requirements of the directive. Various
programmes are in place to overcome this barrier between two of the world’s
major economic forces, however the insistence of the European Union on
strict controls over such a valuable resource as personal data is pushing the
world at large towards strong data protection policies.

There have been analyses of privacy that do not support its importance in
society. The work of Posner (1981) examines privacy from an economic basis.
This view states that personal information should be kept private only if the
economic value to society of such information is decreased by its becoming
public knowledge. Posner argues that the only personal value in concealing
private information is in deceiving or manipulating others for personal gain,
and thus is not of economic use to society as a whole. This view proposes
corporate privacy as having value, but asserts that personal privacy is not
beneficial to a nation’s economy and so should not be protected in law.

Posner’s view of privacy has not achieved wide acceptance, and many soci-
eties in the modern world have enacted laws that protect privacy to a greater
or lesser extent. The increasing level of information that is transmitted, and
thus may be stored, by computers is causing a greater public interest in the
right to privacy. In the past, privacy was naturally protected by the difficulty
of storing and collating personal data. As comprehensive surveillance and
indefinite storage become increasingly feasible, it has become necessary to
protect this right in more explicit and effective ways.
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1.2 Anonymity

Privacy legislation and regulations that have been enacted around the world
are a useful step in preventing the widespread storage and dissemination of
personal information. There are, however, always parties that seek to bypass
these measures, for a variety of reasons. Rather than regulate the storage
and transmission of personal information, advocates of anonymity propose
to achieve the same goals by preventing such information ever becoming
available. This position provides the motivation for the work presented here.

1.2.1 Names and Identity

Many of the concepts that we examine are in some way concerned with the
obfuscation of information that relates to a user’s identity. This information
can take many forms, but the classic example is the name. The name of
an individual is intended to be a unique identifier within some group that
allows for that individual to be distinguished from the other members of that
group. The fact that, in the increasingly large social groups in which we find
ourselves, a classical name is rarely unique does not affect the purpose of
distinguishing those around us by such labels.

When we discuss the anonymity properties of an individual, we are im-
plicitly assuming definitions of identity. We assume that a user of a system
is a unique individual who performs actions that can potentially be traced
by another individual. However, there is a dissociation between a user’s
representation in a system and their “real-world” persona. Multiple users
can collaborate to form a single online identity, and a single user may have
multiple representations online. The implications of this are not fully un-
derstood; the simplifying assumption that a single user is linked to a single
representation is almost uniformly made.

While it is possible to work with definitions of a name that rely on our
implicit assumptions concerning identity, it should be remembered that there
are many possible interpretations of what constitutes an identity.

1.2.2 Etymology

The English word anonymous is derived from the classical Greek stem ‘ονιμα’
(onyma, name), combined with the prefix α- (a-, the absence or lack of a
property). Anonymity may therefore be understood as the state of being
nameless or having an absence of identification.

To extend this definition to more common use within the field, consider
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“Anonymity is the state of being not identifiable within a set of sub-
jects”

– (Pfitzmann and Köhntopp, 2000)

This definition succinctly expresses the main purpose of anonymity, sub-
ject to questions concerning the term “identifiable”.

Anonymity is the fundamental identity hiding property, providing total
removal of identifying information from its subject. Any identifying infor-
mation required by individuals can trivially be added into a communication
in an otherwise anonymous system. As such, anonymity systems provide the
option of limiting identity hiding as much or as little as desired by explicitly
revealing identifying information when necessary.

Total anonymity is the focal point for research into identity hiding. To
achieve this, anonymity systems are uniformly based on a small set of possible
approaches, The mix, originally proposed by Chaum (1981), is the most
significant of these. The most common approaches to providing anonymity
are treated in detail in Chapter 3.

Despite this focus on anonymous systems, total anonymity is very much
a two-edged sword. For certain forms of application, such as posting to
mailing lists or accessing the world wide web, anonymity can be a highly
desirable goal. Other systems, however, suffer greatly if there is no possibil-
ity of tracking identities. Sometimes identity needs to be tracked over the
course of an extended transaction, but not between transactions. For this
reason pseudonymous communication, which provides a certain amount of
information associated with an identity, is required for a number of practical
identity hiding systems.

Sender and Recipient Anonymity

We have already defined anonymity as the property of being nameless, given
certain assumptions concerning the meaning of a name. However, this ab-
sence of naming is only of use or interest in a communicating system. Com-
munication requires two participants: a sender and a recipient, where either
participant may in actuality be a group of individuals. To whom does this
anonymity apply?

This question divides our definition of anonymity. We may ensure the
anonymity of the sending actor in some communication, but leave the recip-
ient’s identity open to the world. Conversely, it is possible for a sender to
make available their identity but to ensure that the recipient of their mes-
sage remains unknown. This provides a very different problem from sender
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anonymity, and is also less studied. Finally, it may be desirable for both end-
points of communication to be hidden from observation. Each of these forms
of anonymity has its own set of applications, design problems and potential
attacks.

Connection-Based and Message-Based Anonymity

An important distinction in anonymity systems is the form of communication
that takes place between the sender and the recipient. Much of the data
transmitted across the Internet makes use of stream-based protocols that
maintain persistent connections between communicating parties. Despite
this, many applications are themselves message-based at a higher level.

Early anonymity literature focused on message-based anonymity, which is
an easier problem than that of anonymity within connection-based systems.
However there are some applications that cannot be performed effectively
using a message-based approach due to the level of latency that these systems
typically exhibit. Maintaining anonymity in systems that rely on persistent
connections with low tolerances to traffic latency is an open problem.

A number of approaches to connection-based anonymity have been pro-
posed. By far the most popular of these is onion routing, originally proposed
by Goldschlag et al. (1996). This approach is discussed in greater detail in
Section 3.4.2. The main concern with such systems, beyond the anonymity of
the users, is to ensure low-latency connections with reasonable bandwidth re-
strictions. These constraints makes it necessary to use alternative approaches
that that reveal a new set of potential attacks.

The Anonymity Set

The traditional quantification of anonymity is the anonymity set : the set
of all participants who could have performed an action. This approach was
originally proposed by Chaum (1981), who made use of the set analyse the
anonymity of the mix system as described in Section 3.1. This quantification
relies on the assumption that the larger the size of the set of participants
that could have performed an action, the stronger the anonymity provided
by the system.

This quantification is not ideal as it assumes a uniform distribution of
probabilities across the set of participants. This assumption is not ideal for
a group of heterogeneous users. In response to this, a number of alternative
quantification methods have been proposed that seek to deal with both this
and other problems inherent in the anonymity set (Serjantov and Danezis,
2002).
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Unlinkability

Pfitzmann and Köhntopp (2000), in reasoning about anonymity systems,
propose a viewpoint defined by a set of subjects sending messages to a set of
recipients. In this setting, the critical concept is an item of interest, defined
as the sending or receiving of a message.

The desirable property of an anonymity system is that items of interest
are unlinkable to any identifier in the system, and no identifier in the system
can be linked to a specific item of interest. This provides a basic definition
of anonymity, although it does not directly lend itself to a quantification of
the property.

Bitwise unlinkability (Danezis, 2003) is the concept of cryptographically
obscuring the content of messages as they pass through a network node. This
obfuscation makes it impossible for an attacker to link an ingoing message
to an outgoing message by examining the data. Almost all implemented
anonymity systems use this process in combination with some method of
overcoming traffic analysis in order to achieve practical anonymity.

1.2.3 Pseudonymity

“If liberty means anything at all, it means the right to tell people what
they do not want to hear.”

– Eric Arthur Blair (writing as George Orwell)2

Closely related to anonymity is the concept of the pseudonym. The word
“pseudonym”, that stems from the Greek ‘πσευδος’ (pseudos, false) again
combined with ‘ονιμα’, refers to the adoption of a false name. Traditional
use of pseudonyms was as a method by which authors could publish politically
inconvenient material without the threat of retaliation.

Pseudonymity causes users to be associated with a persistent identifier.
The purpose of this approach is to allow types of transaction, relying on user
history and behaviour, that are not possible using anonymous systems. This
is of particular use in systems that rely on networks of trust between users
and thus cannot employ single-use approaches to authentication.

As mentioned above, pseudonymity can be achieved through the use of an
anonymous infrastructure with suitable user information and history stored
within the explicitly transmitted data. If the communication system on which
communication relies is inherently anonymous then pseudonymity becomes

2from “The Freedom of the Press”, Orwell’s original unpublished preface to Animal
Farm, first published in The Times Literary Supplement, 15 September 1972.
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an easier proposition, as data can be released as chosen by the user without
fear of extra information leakage from the system. Care must be taken that
the interaction between deliberately released data and otherwise harmless
data within the system cannot interact to reveal more than is intended.

Pseudonymity may therefore be seen as a problem that overlays an-
onymity. An anonymous channel may have some form of persistent user
identification added that is kept secret between the sender and recipient.
Pseudonymity may be viewed less as a primitive construction and more as
a combination of other security properties such as secrecy, anonymity and
authentication.

Pseudonymity is often required in censorship-resistant systems. Several
systems to achieve this goal have been proposed, such as the Eternity service
of Anderson (1996), the “Publius” system of Waldman et al. (2000) and
the work of Goldberg (2000); Goldberg and Wagner (1998). Censorship-
resistant systems typically aim to provide an online anonymous data store
that maintains the availability of published documents in the face of attacks.
Such approaches are designed to be resistant against any measure, whether
physical or legal, to remove data from the system once it has been published.

1.2.4 Applications

In investigating a property it is generally useful to establish its applications.
This is particularly the case for properties such as anonymity that have a
clear potential for abuse by malicious parties. It is important to consider the
benefits that are made possible through these investigations.

Public Discussions

The purpose of an anonymous system is to allow an individual to perform
an action without an observer being able to link the individual to the action.
The reason for any individual to perform actions with anonymity is to prevent
the consequences of an observer learning the source of the action.

In discussions, an identifiable participant may not wish to express their
own views unreservedly. If the topic under discussion is controversial then
a user may fear the association of their identity with an unpopular view-
point. If participants are known to each other they may fear to disagree with
each other on particular topics for fear of causing offence, or alternatively
may disagree for personal reasons. A level of self-censorship is inherent in
many social situations, and this can lead to an unhealthy homogenisation of
viewpoints.
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More seriously, certain topics may be entirely taboo. In such cases a topic
may never be discussed at all due to the fear of being associated with the
topic in question. Taboos may be social, in which case a user will fear the
censure of their acquaintances; alternatively, a taboo may be legally enforced
and thus have more serious ramifications if broken.

A consequence of such taboos is discussed by Templeton (2001). The
argument presented there is that societies benefit from“fringe” groups that
challenge societal norms and opinions. Over time, certain ideas that were
previously unacceptable become accepted as mainstream thought. In an en-
vironment where surveillance becomes ubiquitous, fringe groups are stifled
by their inability to function outside of the view of society. In such situa-
tions, the possibility for individuals to anonymously explore the boundaries
of acceptable ideas has the potential to aid in the healthy development of
wider society.

Reporting

A more direct application of anonymity than the ability to discuss poten-
tially unpopular ideas is the ability to anonymously report on the actions
of powerful entities. Anonymous political reporting as a means of overcom-
ing censorship of authors is well known historically, and is often cited as a
motivation for current research into anonymity systems.

Political reporting is a useful example due to the nature of governments
as powerful entities with the power to severely restrict or harm individuals.
Additionally, the employees of a company may be under similar restrictions
and feel unable to report on questionable activities that they observe in the
workplace. For such individuals, and for society at large, a mechanism that
allows anonymous “whistle-blowers” can be of great benefit.

Voting

Voting is fundamental to many societies in a world where democracy is widely
regarded as the ideal form of government. The ability of a person to take
part in the governance of their own country is, like the notion of personal
privacy, enshrined in the United Nations Universal Declaration of Human
Rights (United Nations, 1948).

Voting is critical to a democracy. The collective act of voting decides the
nature of government in a country, carrying with it a great deal of power and
potential for abuse. In order for a voting system to function, there must be a
method of counting votes and verifying that those votes were correctly cast
and recorded. In contrast, it is not appropriate for a vote to be directly traced
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to an individual. If an individual’s vote can be traced then that individual
can be coerced into voting in a particular way, either by a party offering
rewards for voting in the desired fashion or by threatening punishments for
voting against them.

Voting therefore presents the interesting problem of requiring some form
of linkage that allows a voter to ensure that their vote was correctly recorded,
while protecting that user from an outsider discovering their vote. The nature
of voting also results in a very powerful attacker inside, or even controlling,
the system with the desire to compromise or affect the vote. Balancing
these factors is an extremely difficult problem and has been the subject of
much research. In particular, Arrow (1950) demonstrates that, under certain
reasonable requirements, it is not possible for a voting system to provide all
desired properties.

Assessment

A more pragmatic use of anonymity is that of anonymous assessment of work.
This application of anonymity is to be found in such areas as the marking of
examinations or coursework in academic institutions. In such situations, the
user whose work is being assessed must be unknown to the assessor to avoid
favouritism or bias. A similar application is to be found in anonymous sug-
gestion boxes used in workplaces and for feedback by employees concerning
their superiors.

An interesting feature of these systems is that users may not desire anon-
ymity and may actively seek to compromise themselves. A favoured student
or well-known expert may wish to identify themselves, despite the anonymity
of the system, in order to gain from their reputation. The challenge of forcibly
anonymising a user is very difficult, particularly in the case where the data
rather than the traffic flow of the network is under scrutiny.

We do not generally consider the content of messages in the work that
follows, concentrating instead on the ability of attackers to identify users
from their behaviour. This implicitly suggests that the systems we examine
rely on users who do not actively seek to compromise their own anonymity.
Despite this, in some cases the inability of a user to prove that they were
the originator of a message could be beneficial. Anonymous auctions, in
which only a particular party can prove that they were the winning bidder,
could make use of such a property. Anonymity system that allow users to
compromise their own anonymity at will subject those users to the fear of
coercion. If a user is unable to prove to a third-party that they were the
initiator of a transaction, it prevents them from being forced to do so.
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Data Sanitation

Medical records and census data are interesting in that, while they are cer-
tainly concerned with the anonymity of participants, they are not based
around the transmission of data. The main aspect of interest to anonymity
is the sanitising of the data: the removal of identifying information or the
formatting of the data in such a way that identification becomes difficult.

The sanitising of data is an interesting problem that does not, however,
fit into the transaction model in which we are interested. As such, we do not
discuss it further.

1.3 Summary

In this chapter we have examined the historical and philosophical background
of anonymity. We have seen justifications for users to desire anonymity and
its related properties, as well as briefly detailing concrete examples of appli-
cations that are made possible through anonymous communication methods.
A belief in the notion of privacy, as well as the beneficial applications of
anonymity, provide the motivation for the work that follows.



Chapter 2

Basic Concepts

In working towards the classification of anonymity systems, it is necessary
first to define our terminology. We discuss here a number of terms and
concepts that relate to anonymity.

2.1 Actors

Here we discuss the terms applied to actors within the system. These are the
individuals who perform actions within the system. These encompass the
users desiring and providing anonymity as well as the attackers who seek to
break the system for their own purposes.

A user is an actor within some system who may process and, potentially,
create data in the form of messages. Any number of individual users may
group together in order to form a communicating party.

In the most common form of system that we examine, a user corresponds
to an individual who may send, receive or observe a message. In other systems
the user may be an individual selling an item in an online auction, a citizen
voting in a national election or an author attempting to publish an article
anonymously. Users therefore encompass all those who may take part in a
transaction, as well as those who attempt to attack or compromise the system
in some way.

One or more individual users that jointly take part in a transaction form
a communicating party. The defining characteristic of a multi-user party is
that all users in the party share access to all data relevant to the transactions
in which the party engages. It is important to note that the users in a party
do not have full and unrestricted access to all data belonging to other party
members, nor do all members of a party necessarily share the same ultimate
intent. This concept is discussed further in Section 2.6.1.
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Participants in a transaction are those parties that are directly involved in
the transaction either as initiators or recipients. This term does not include
users who are merely relaying requests for other users, or attackers who seek
to compromise the anonymity of a party.

The party that initially causes an anonymous communication to take
place is referred to as the initiator of that transaction. In order to clearly
distinguish the communicating parties, we treat a transaction that involves
anonymity as separate from any preceding setup phase that caused that
anonymous data transfer to take place.

For example, a census system that allows subjects to respond anony-
mously, but does not explicitly have any method to prevent detection of who
is sent census forms, would treat the subject of the census as the initiat-
ing party, not the party that is intending to collect the data. The initiator
initiates the anonymity-based element of the transaction, regardless of the
ultimate author of the exchange.

As many systems that we consider function under the classic concept of
messages being actively sent by the initiator, we often refer to initiators as
senders.

The recipient in a given transaction receives a data transfer from the
initiator. In the case that the main source of data is the recipient, for example
in a database query, the initiator remains the user that first requested the
data. When we consider the standard message sending model, the recipient
will generally be referred to as the receiver.

Any party that seeks in some way to compromise, weaken or break the an-
onymity of a party involved in some transaction is referred to as the attacker.
The nature of compromise depends upon both the attacker’s requirements
and their capabilities. An attacker is a party in the system, possibly con-
taining multiple colluding users.

The attacker and its capabilities are discussed in greater detail in Section
2.6.

2.2 Structure

Here we define the terms that apply to the structure of the anonymity systems
under consideration.

The system refers to the combination of all users, the parties they form,
the nodes through which messages can pass and the links between them.
Each node in the system is a discrete point that may be part of the route
of a transaction. At this point, messages may be intercepted or modified.
A single transaction may encompass any number of intermediary nodes. A
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node will typically be closely linked to a party, such as a computer in a
communication network and the operator of that node. In certain cases,
actors or parties themselves may act as nodes.

Links form connections between nodes and between users. Each link,
which need not be a physical object, allows for data to pass between nodes
and can potentially be compromised by an attacker.

The basic interaction between participants in the systems that we consider
is the transaction. Each transaction is the exchange of data in some form
and may involve any number of parties. Parties take part in a transaction
either as intermediaries transferring data, as participants at the end points
of the data exchange or as attackers.

2.3 Anonymity Definitions

There are several ways to define what is meant when we refer to the an-
onymity that may be desired by a user. Possibly the most widely quoted
definition in the literature is that of Pfitzmann and Köhntopp (2000):

“Anonymity is the state of being not identifiable within a set of
subjects, the anonymity set.”

This definition reflects the original quantification of an anonymity sys-
tem: the larger the number of actors that could have performed an action,
the better the anonymity provided by the system. Diaz et al. (2002) and
Serjantov and Danezis (2002) have expanded on this concept to consider the
notion that the strength of the anonymity increases both with the size of
the set and the uniformity of the distribution linking actors to observable
actions.

Pfitzmann and Köhntopp (2000) explore in greater detail more terms
related to anonymity and the systems that provide this property. However,
we choose here to examine the concept of identifiability more closely with
regards to the requirements of the potential attacker.

2.4 Identifiability

It is important to understand what an attacker considers to be a satisfactory
identification of a participant before acting on their knowledge. In many
cases we assume a unique identifiability property wherein an attacker will
only act on reducing the anonymity set to a single actor with absolute cer-
tainty. However, there are two factors that the attacker may choose to treat



34 CHAPTER 2. BASIC CONCEPTS

differently: the cardinality of the anonymity set, and the level of certainty
with which the identification is made.

2.4.1 Cardinality

An attacker may be content to act once the anonymity set has been reduced
to a certain size. For example, in a criminal investigation it may be most ef-
fective to reduce the set of suspects to an approachable level before detaining
and questioning those few members of the set that remain.

Similarly, a malicious attacker who wishes to perform a denial of service
attack on a particular user may have the resources to perform this attack
on more than one victim. In this case, once the number of potential victims
has been reduced to an acceptable level the attacker may have no qualms in
attacking all members of the set in order to ensure that the intended victim
is affected.

The concept of protecting users up to a certain cardinality of the anon-
ymity set has been presented in the privacy literature, where it is known as
k -anonymity. The notion was first put forward by Samarati and Sweeney
(1998) and was further developed by Sweeney (2002). This view of anon-
ymity was originally used as a quantification and model for ensuring privacy
in databases.

A system is said to be k -anonymous for a given value of k if a particular
user’s data is indistinguishable from that of k − 1 other users in the system.
In the communicating systems that we consider the concern is with a user’s
traffic patterns and not their stored data, however the applicability of the
concept is clear.

2.4.2 Certainty

Similarly to the protection of k -anonymity, we may also consider the attacker
who is willing to act while uncertainty remains that their target has been
correctly identified. This attacker may act in cases where a more careful
attacker would remain indecisive. In the information theoretic quantifications
of anonymity, anonymity is represented by a probability distribution across
the set of participants that represents their likelihood of being the source of an
item of interest. An attacker may choose to consider only those members of
the set with a certain probability of being the intended target, given observed
data, and thus greatly reduce the time and effort in proving this identity.

In the case that an attacker is looking only for a scapegoat, or is seeking to
make an example for other users, that attacker may be content to isolate a set
of users with sufficiently high probability of being the source of a message
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and punish a member of that set at random. The possibility of such an
unjust attacker could have implications in the system’s strategy for preserving
homogeneity amongst users.

2.4.3 Sufficient Anonymity

The concepts discussed in the previous sections suggest that a single quan-
tification of the anonymity provided by a system is not sufficient to judge the
safety of users from differing attackers. Although an anonymity system will
typically rely on cryptographic functions that may in themselves be treated
as unbreakable black box functions, for the system as a whole we can usually
only work towards a relatively weak idea of sufficient anonymity.

Sufficient anonymity is the property that a system’s users be homogeneous
to the extent that an attacker cannot distinguish any subset with acceptable
certainty of containing a specific user such that that subset is small enough to
be harmed by the attacker. A sufficiently anonymous system could therefore
be informally defined as:

A system causing the inability of an attacker to prove with ac-
ceptable certainty a correlation between a number of transactions
and a subset of users such that this subset is small enough to be
harmed by the attacker.

It is clear that in this definition there are certain terms requiring further
explanation: both the level of acceptable certainty for a user and the ability
of an attacker to cause harm are dependent upon the specific requirements
and capabilities of the users and the attacker.

2.5 Characteristics

We may informally characterise an anonymity system by a number of factors
relating to the nature of communication that take place in the system. These
factors are discussed in detail here.

2.5.1 Anonymised Party

It is important to consider the parties that require anonymity in a particular
system. It is often the case that the initiator of some transaction requires
anonymity, resulting in the common sender anonymity seen in the sending
of anonymous messages and posting to discussion forums.
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In other situations, both the initiator and the recipient of a transac-
tion may require anonymity. This is may be necessary to allow anonymous
conversations to take place and in some auction systems. This form of anon-
ymity corresponds to relationship anonymity as described by Pfitzmann and
Köhntopp (2000).

Finally, it may be the case that the initiator may be identifiable while
the recipient remains anonymous. While rare, certain applications such as
payments made to anonymous bank accounts can express this anonymity
characteristic: recipient anonymity.

2.5.2 Connection

An anonymous communication may need to continue over a number of linked
transactions. Such transactions must in some way be connected whilst main-
taining anonymity for the initiator of the transactions. This is the basis of
pseudonymous communications, in which a participant is temporarily asso-
ciated with an identifier that allows them to be tracked across a number of
transactions. Pseudonymity is of great use in systems which must offer a
level of trust or reputation for users.

Pseudonymity, clearly a different property from anonymity, may be seen
as representing the area on a scale between total anonymity and total iden-
tifiability. The concept of a “nymity slider” that scales between anonymity
and authentication, referred to as “verinymity”, is proposed by Goldberg
(2000).

A standard anonymised email conversation with anonymous replies forms
a connection between participants. More directly, many systems aimed at
providing real-time anonymity for purposes such as web-browsing are con-
nection based by their nature.

2.5.3 Distribution of data

In preserving anonymity, it is important to consider the parties that may view
the results of the communication. A message posted anonymously to a public
discussion is open to the world; a private message is viewable only by the
recipient. The visibility can allow attackers to gain extra information about
the message and its participants. In particular, analysis of unencrypted text
can eventually distinguish between different authors. When a message has
appeared in an openly viewable forum, it cannot be denied that a message
has been sent. In the case of private messages the existence of dummy traffic
passing through a system could conceal such an event.
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The distribution of data is linked to the number of participants involved in
a transaction, although a private communication may be sent to a number of
users. A public transaction is necessarily viewable by any party that chooses
to do so. A private communication, whilst perhaps available to a group of
recipients, can only be viewed by its intended recipients. There is, of course,
nothing to stop a participant from making private data public. Disregarding
revocability issues in proving or disproving the origin of data, it is difficult
to protect the anonymity of a user against their will.1

2.5.4 Participant Relations

Any number of participants can be involved in anonymous communications,
and a simple one-to-one relationship is not sufficient to encompass a reason-
able model of anonymity. It is important, in examining a system, to define
the nature of the communication that can take place.

Most commonly, participant relations are either simple one-to-one or one-
to-many multicast transactions. It is also possible, however, that a transac-
tion may involve more complex combinations of participants.

In certain cases, it may be worthwhile to treat a group of participants
as a single identity; in other cases a group is necessarily split. Work into
the treatment of identity and knowledge in anonymity systems for groups of
users is given by Syverson and Stubblebine (1999).

2.5.5 Revocability

In some situations it may be necessary for anonymity to be of limited du-
ration. It may be desirable for anonymised data to reveal the source actor
under certain conditions. The nature of such a condition could be the pas-
sage of a period of time, the end of an auction or the upholding of an abuse
claim. Such systems are also useful in the anonymous marking of students’
work, and in academic peer review, as discussed in Section 1.2.4.

One of the most common examples of revocability in anonymity systems
is an auction system in which bidders remain anonymous until the final bids
have been counted and the winner decided. At this point it becomes necessary
to in some way identify the winning bid. A proposal for such a scheme is
presented by Stajano and Anderson (1999).

1Preventing a user from compromising their own anonymity, while difficult, is not im-
possible. One method for achieving this is for multiple users to claim to be the source of
some data. A well-known example of this is the famous “I am Spartacus” scene from Stan-
ley Kubrick’s 1960 film, in which an entire army claim to be Spartacus in order to prevent
him from identifying himself. It should be noted that this attempt was unsuccessful.
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2.6 Attackers

A detailed study of attacker models in anonymity systems is given by Ray-
mond (2000). With slight extensions to the original definitions, we consider
the capabilities of an attacker to be characterised by four criteria. In addition
to these capabilities, and in line with our view of anonymity from Section 2.3,
we examine here how the requirements and abilities of the attacker interact
with the nature of anonymity systems.

2.6.1 Internal/External

The pervasiveness of an attacker limits the type of attack that may be
mounted against an anonymity system. Specifically, an internal attacker has
access to the interior workings of some communication node in the system,
where an external attacker is limited to data that travels between nodes.

This distinction becomes particularly important in conjunction with the
distribution of the transaction. An attacker who has internal access to a
private transaction negates the protection gained by secrecy of the data.

The internal attacker often functions as a corrupt node. The attacker
may view the passage of data and may gain information concerning routing
information that is not possible through observation of the communication
medium. The attacker functioning as a corrupt node is typically capable of
active attacks from that node.

2.6.2 Static/Adaptive

Static attackers are fixed in their location and their responses to data. These
attackers are thus unable to alter their behaviour once a transaction is in
progress. Simple devices observing a network at fixed locations may not be
able to respond to changes in network traffic to exploit observed patterns.

Conversely, the operator of a rogue network node may be able to directly
alter aspects of their node in order to take advantage of the passage of a
particular message. This allows for a much greater range of potential attacks
to be mounted by the adaptive attacker.

The work of Raymond (2000) defines the static attacker in terms of the
run of a particular protocol: the static attacker must define its behaviour
before the protocol run, whereas the adaptive attacker may choose to alter
its strategy once the protocol has started.
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2.6.3 Active/Passive

Different attacks on systems require differing behaviour from the attacker. In
some cases, passive attacks may be mounted simply by observing transactions
between nodes. A passive attacker may attempt to compromise a system by
making deductions from the naturally occurring flow of data.

Other attacks require that the attacker be able to change the data that
passes through the system. The active attacker functions by injecting data
into transactions or altering the existing data passing between participants.
The distinction between active and passive attackers causes great differences
in the nature and power of potential attacks.

2.6.4 Local/Global

It is significant in considering attacker models whether the attacker is global,
and thus present across the entire system; or local2 and so restricted to
some subset of links and nodes. The global attacker is a powerful adversary,
capable of mounting some of the most effective attacks against users of an
anonymity system, as shown by Danezis and Sassaman (2003).

Some forms of global attacker, specifically the external active global at-
tacker, correspond to the standard Dolev-Yao attacker considered in security
literature. This attacker is considered to be equivalent to the communica-
tion medium between actors, and was originally presented by Dolev and Yao
(1983).

The pervasiveness of an attacker across a network can vary greatly. Whilst
some attacks are possible only for a global attacker, the local attacker who
controls particular subsets of nodes or the links between them can still mount
weakened forms of global attacks.

2.7 Summary

In this chapter, we have presented an informal overview of generalised anon-
ymity systems. We have explored the nature of the transactions that take
place between actors in such systems, and considered the various capabilities
of attackers that may seek to compromise the anonymity of individuals. We
now examine anonymity systems in more detail.

2The term non-global is possibly more appropriate, as a local attacker may often be
considered to control a limited subset of the entire network without being restricted to a
given node.
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Chapter 3

Anonymity Systems

In this chapter we will examine the technologies that underlie anonymity
systems and their development since the introduction of the mix by Chaum
(1981). We consider the historical development of anonymity systems, and
the attacks that have been mounted against them. This provides us with an
insight into the similarities that underpin the existing solutions to providing
anonymity and how we may isolate these fundamental features.

We begin by examining the mix, which remains an important and wide-
spread anonymity technology. Next, we explore variations of the mix and
its development since Chaum’s original proposal. Finally, we examine other
technologies that aim to achieve the same goal but that do not derive directly
from the mix.

3.1 Mixes

Since proposed by Chaum (1981) the mix has been the focus of much an-
onymity research, although in recent years there has been increasing focus
on real-time technologies such as onion routing as proposed by Goldschlag
et al. (1996). There are many variations on the basic mix design that aim
to mitigate attacks against the system and to improve on various aspects of
security, reliability and performance.

Mix systems were first proposed by Chaum (1981) as an anonymising
process for electronic mail. This seminal paper began serious research into
Internet-based anonymity systems

41
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3.1.1 Basic properties

A mix node accepts encrypted messages that are then decrypted and stripped
of all sender information. This process provides unlinkability between mes-
sages, trivially defeating analysis of message flow by removing identifying
information.

Messages are stored in the mix until some trigger condition is reached.
When this occurs, the mix forwards its internally stored messages in random
order to their respective recipients, or to other mixes that repeat the strategy.
Mixing defeats traffic analysis by removing correlation between the flow of
input and output messages. The condition that determines the sending of a
message greatly affects the nature of the anonymity provided by the mix and
the attacks that can be employed against the users.

Latency is inherent in a mix system due to the delay caused by accu-
mulating a number of messages. This latency makes the system unusable
by applications that rely on real-time message passing. As such, mixes are
typically used for message-based applications such as email in which delays
are acceptable.

Unlinkability

The purpose of encryption in a mix system prevents an attacker from deduc-
ing linkages between incoming and outgoing messages based on the message
content. Typically, messages are padded to a fixed size with larger messages
split into a number of appropriately-sized chunks.

The message sequence from a sender to a recipient through a mix can be
expressed as follows:

Sender −→ Mix: {Msg, Recipient}KMix

Mix −→ Recipient: Msg

The above notation is standard in referring to communication protocols
to represent the sequence of messages passed between parties. Each line
represents a single step of communication; A −→ B represents that the
data in question is sent from party A to party B . Everything following this
describes the data that is passed. When considering protocols that involve
cryptography we use {M }K to refer to a message M encrypted with some
key K .

The behaviour described above can be extended to multiple mixes by use
of layers of encryption, each of which corresponds to a mix node in a path.
Messages could therefore take the form:

{{ ... {Msg, Recipient}KMixn
, Mixn ...}KMix2

}KMix1
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At each step the encrypted content contains the next layer to be de-
crypted, along with routing information for the next step in the path of the
message. This prevents the entire route becoming known to any one inter-
mediary node.

Mixing

For simple buffers, in which messages leave a node in the order that they
arrive, it is trivially possible to deduce the relationship between senders,
messages and recipients. This is achieved by observing the ordering or timing
of messages entering a node and correlating them against the flow of output
traffic. A mix is designed to eliminate any correlation between messages
entering the node and those that leave. The most common way of achieving
this goal is by storing multiple messages and flushing them in a random order.

The trigger conditions that cause mixes to send out their message batches
are the subject of much study. Different approaches are vulnerable to differ-
ent attacks, and the problem is by no means trivial. In the following section
we review a number of the common mix designs with reference to their flaws
and advantages. An overview of this subject is given by Diaz and Preneel
(2004b).

3.1.2 Threshold Mixes

The original mix proposed by Chaum (1981) achieves mixing by storing mes-
sages until a certain number of stored messages is reached. The mix then
sends out all stored messages in random order.

The technique of storing a number of messages until a given condition
is reached before flushing messages is the strategy behind a family of mixes
known collectively as pool mixes. A contrasting approach is that of contin-
uous or stop-and-go mixes as proposed by Kesdogan et al. (1998). These
strategies are discussed in Section 3.1.4.

An important form of pool mix is the threshold mix, that improves an-
onymity by retaining a certain number of messages at each round. Every
message entering the mix therefore has a probability of staying in the mix
for an arbitrarily long time. This strategy theoretically increases the size of
the anonymity set for that mix node to include all senders that have sent
a message following the target message; the set of messages that could con-
tain the desired message is all messages that leave the mix after the desired
message entered it.

The fact that a message is increasingly likely to have left the node after
a large time period highlights the flaw in using the anonymity set to analyse
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these mixes directly. That messages may remain in a mix during multiple
flushings of the buffer trades an increased latency in message delivery for this
increase in confusion regarding the sender of a message.

Simple threshold mixes are open to an n − 1 attack, in which an attacker
floods a mix with fake messages that are traceable by the attacker. By
creating an overwhelming majority of traceable messages, the attacker is
able to isolate a target message at each round. As this single message is
the only one that is not owned by the attacker, the correlation between the
single unknown input and the single unknown output is trivial. This attack
is discussed in Section 3.2.

3.1.3 Timed Mixes

In contrast to the threshold mix, messages in the pool of a timed mix are
flushed at a given time interval (Serjantov and Newman, 2003). This ap-
proach prevents messages remaining in the mix indefinitely when too few
messages are received to reach the threshold value. The timing strategy,
assuming total flushing of the pool at each round, also guarantees a lower
bound on the latency of message delivery. This approach suffers from the
flaw that if only a small number of messages enter the mix in a given time
period, the anonymity of the messages is severely compromised.

Most implemented systems that use a pool mix combine a timing and
a threshold constraint in order to gain the benefits of both strategies. A
notable example is the Mixmaster anonymous remailer network, originally
proposed by Möller et al. (2003), discussed in Section 3.5.1.

3.1.4 Continuous Mixes

Kesdogan et al. (1998) present the concept of a stop-and-go, or continuous,
mix. In this approach, each sender selects a delay from a given distribution
and uses this to define a per-message delay. The mix delays the message for
the specified time period before forwarding it.

This approach allows flexibility in the latency of messages. Users can
balance strength of anonymity against latency. This gives the continuous
mix potential use in applications that require tighter time constraints than
is possible to achieve with other forms of mix. In addition, a user has a
predictable latency for messages and so can potentially detect interference in
the network from an attacker who is delaying messages.
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3.1.5 Mix Networks and Mix Cascades

It is not desirable to rely on a single mix node for anonymity. Pfitzmann and
Waidner (1985) show that the possibility of traffic analysis is much higher for
a single location on a network. In addition, a lone mix node is a single point
of failure. The possibility of the mix being compromised by an attacker or
a dishonest mix operator is too high to risk the total loss of anonymity that
these situations would cause.

Messages are therefore typically routed through several mixes. With ap-
propriate use of encryption, this ensures the anonymity of a message provided
that at least one mix on the route is not compromised.

The routing strategy for a message through such networks is important.
Mix networks, as presented by Rennhard and Plattner (2003) use a free
route strategy in which users select their own routes through a network;
mix cascades, presented by Dingledine and Syverson (2002a), restrict the
path a message may take through the network. There is debate as to which
strategy is more effective and robust; Berthold et al. (2000) argue the case
for using a mix-cascade over the more common mix-network. The relative
advantages and disadvantages of both approaches are discussed here.

3.1.6 Mix Networks

Mix networks use a free-route approach to the network path. The user
chooses a path from the available mixes for each message sent, which pro-
vides a level of flexibility in the network. A user may choose to route their
message through mix networks that they trust, or that have behaved reliably
in the past. Free-route networks scale well as the number of network nodes
increase. The free-route approach also provides fault-tolerance, as nodes that
cease to function can be routed around by the system.

The free-route approach does, however, suffer from a number of potential
active and passive attacks that can compromise anonymity. These are de-
scribed in detail by Berthold et al. (2000), and typically rely on an attacker
that controls the majority of mixes in a network.

It is possible for an attacker to partition messages going through an honest
node based on the number of other nodes through which they have already
passed, this information being available to a global attacker observing net-
work traffic through compromised nodes. With successive rounds, this par-
titioning can reduce the anonymity set for a message to only those messages
that have passed along the same route.

Danezis (2003) notes that in a free-route mix network with a large percent-
age of compromised nodes, the chances of a choosing an entirely compromised
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path become high. In such a compromised path, anonymity is completely
lost.

3.1.7 Mix Cascades

Pfitzmann and Waidner (1985) present the concept of mix cascades, in which
a number of fixed paths through the network are used. This ensures that more
messages take a particular path than in a free routing mix network. This
increases the homogeneity of traffic flow and so mitigates the partitioning
attack.

In free route mix networks, each node is a member of a large set of
potential routes. There may therefore exist a significant difference between
the maximum and minimum observed traffic through that node. At some
times a node may be overwhelmed by the traffic passing through it, while at
other times it may handle only a tiny amount of traffic. In mix cascades, all
traffic is routed consistently through the fixed paths. By doing so, the traffic
is made as uniform as possible, helping to prevent exploitable patterns in
message flow.

Mix cascades suffer from a number of problems. In free route networks,
an attacker must compromise a large number of nodes in order to success-
fully mount many known attacks; in a mix cascade only the nodes on a
particular route need be compromised. An attacker can therefore focus their
resources more effectively. The flexibility and fault-tolerance seen in free
route networks is also lost to an extent in mix cascades. Cascades are also
subject to denial of service attacks by shutting down a single node in a route.
The nature of the mix cascade networks causes such an action to destroy a
significant portion of the network.

3.1.8 Hybrid Approaches

Neither mix cascades nor networks offer the perfect solution to routing within
a network of mixes. As such, a combination of the two approaches may be
appropriate for some situations. Berthold et al. (2000) enumerate a number
of proposed advantages to free route networks and show that each can, to
some extent, be achieved within a cascade.

Many of the techniques to improve the behaviour of cascade networks
move away from the strict single-route towards a more flexible routing sys-
tem. Danezis (2003) proposes to provide a number of cascade routes through
the system, with the user selecting one of these. Berthold et al. (2000) allow
each node in a path to nominate a number of potential next steps with the
user being able to select from these options.
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Another hybrid approach by Danezis (2003) employs a network based
on sparse, constant degree graphs known as expander graphs. This network
topology, and the use of probabilistic techniques to select the next node in
the message path, provide a system that holds many desirable characteristics
of both free route mix nets and mix cascades.

3.1.9 Synchronous and Asynchronous Batching

Dingledine et al. (2004b) suggest that the perceived difference between mix
networks and cascades is largely due to the synchronicity of batching rather
than to the network routing. The authors present an analysis of a free route,
a cascade, and a hybrid stratified topology that all process messages syn-
chronously. In these systems, each mix forwards messages at the end of a
given batch period, and queues any messages that enter the network during
such a period. Such a network, where synchronous batching is the defining
characteristic of the network, was first proposed by Dingledine et al. (2001).

Dingledine et al. (2004b) argue that the use of a synchronous batching
strategy in free route networks provides stronger anonymity overall than
other approaches, and that the traditional problems with free routes may
also be avoided to some extent.

3.2 Attacks on mix systems

Attacks on anonymity systems typically seek to weaken the anonymity of par-
ticipants in the network, or to render the network unusable so that anony-
mous messages cannot pass. The majority of these attacks rely on traffic
analysis : the observation of the flow of messages in an attempt to learn
sender or recipient identities (Back et al., 2001). These attacks may arise
purely from passive approaches, or may be employed by an attacker inject-
ing their own traffic in an attempt to reveal underlying patterns in the flow
of data. Here we provide a high level review of the more well-known attacks
against mix-based systems. A comprehensive survey of such attacks is given
by Raymond (2000).

3.2.1 Passive Attacks

There are two major threat models considered for mix networks. The first of
these is the global passive attacker who has the ability to observe all packets
on the network, but not to inject, capture, delay or otherwise interfere with
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traffic. All attacks possible for this attacker therefore rely on observing infor-
mation about senders and recipients that leaks from the unaltered behaviour
of the network.

The intersection attack (Berthold and Langos, 2002) relies on the fact
that user traffic is not random and can often have predictable behaviour
within certain time periods. In the case of direct conversations, pairs of
users may send messages back and forth for a short time period. By observing
this behaviour and performing successive set intersections on active users at
particular times, it is possible over time to restrict the set of possible actors
involved in given transactions.

Similar approaches include the well-known disclosure attack of Kesdogan
et al. (2002) and hitting set attack of Kesdogan and Pimenidis (2004). These
attacks again rely on finding intersections of anonymity sets associated with a
particular sender over time in order to identify that sender’s communication
partners. As both the disclosure attack and the hitting set attack require
the solution of an NP-complete problem in order to uniquely identify a user,
there is consequently a statistical variant of each that sacrifices accuracy for
efficiency.

Other attacks available to the global passive attacker follow a similar
form, referred to by Raymond (2000) as contextual attacks. Any feature that
distinguishes a particular message from background traffic can be used to
infer information about the sender or receiver. Uniformity is key to defeating
the global passive attacker.

3.2.2 Active Attacks

A different common attacker is the local1 active attacker. Such an attacker
has the ability to inject messages into the network, to compromise a number
of nodes, to delay messages passing through the network, and to alter existing
messages.

A comprehensive overview of active attacks on mixes is given by Serjantov
et al. (2002). Here we review the more common approaches.

The majority of attacks that an active attacker may attempt against a
mix are known as blending attacks. Blending attacks, most notably the n−1
attack, allow a sufficiently powerful attacker to identify the receiver of a
message with absolute certainty for basic pool mixes, and probabilistically
for some more advanced mix designs. Blending attacks generally take the
form of trickle or flood attacks.

1The local attacker refers to an attacker who does not have total coverage of the net-
work, however is not necessarily limited to a single machine.
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Trickle attacks rely on the ability of an attacker to delay or delete mes-
sages approaching a mix. An attacker waits until a mix has flushed its con-
tents then prevents all, or almost all, messages except a target from entering
the mix in the next round. This attack is less effective with more complex
mixes that use dummy traffic and advanced pool-flushing algorithms.

Flooding attacks also wait until the pool of a mix is emptied. After allow-
ing a single target message through, an attacker floods the node with enough
messages to cause the pool to be flushed. As the attacker can recognise their
own messages, the target message is easily traced.

The n − 1 attack is particularly resistant to attempts to reduce its effect.
The use of complex pool flushing algorithms only degrade this attack to the
level of tracing messages with a certain probability of incorrect identification.
The attack relies on a very powerful attacker model, as the n−1 attack must
be performed on all mixes within a network to be fully effective.

3.2.3 Denial of Service Attacks

Another category of attacks against mix systems or networks does not seek
to reduce or compromise the anonymity of users, but rather to prevent the
functioning of the mix networks. These denial of service attacks are of great
concern in mix cascades that use known chains of mixes. Destroying the
functionality of a single mix node removes an entire route from the cascade.
A determined attacker could have a serious effect on a network by attacking
a small percentage of nodes in the network.

3.3 Dummy Traffic

In any proposed mix design there may be fewer messages passing through a
system than required for sufficient anonymity, which relies on a base level of
interactions occurring in a system. Low levels of traffic make most attacks
on the anonymity of users far simpler. Dummy traffic (Berthold and Lan-
gos, 2002) can be inserted into the network to confound traffic analysis by
destroying observable patterns of genuine traffic flow.

Dummy traffic may be generated by network nodes themselves, or alter-
natively be directly introduced by end users. Some systems, such as PipeNet
as presented by Dai (1996), pad traffic with a constant flow of dummy mes-
sages in order not to reveal any features of genuine traffic flow. As we see in
later chapters, dummy traffic is an interesting method of gaining anonymity
in its own right without needing to employ a mix.
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Flooding the network to capacity with dummy traffic overlaying genuine
messages is often considered infeasible due to the bandwidth requirements
that this would cause. Systems that employ dummy traffic, such as that of
Möller et al. (2003), use a lower level of dummy traffic generated by the nodes
themselves. This traffic is created according to a probability distribution that
aims to mimic real traffic, although the ideal probability distribution for such
a task remains an open problem.

There are a number of design decisions in creating dummy traffic. A
node may generate traffic itself, or may pass traffic generated by initiator
and recipient actors. In mix systems, dummy traffic may be inserted into
the message pool, thus potentially affecting the trigger condition for flushing
the mix, or added to the traffic as it leaves the mix. There are also choices
as to whether the dummy traffic should adapt as the message flow increases,
or remain constant. These issues are discussed in detail by Diaz and Preneel
(2004a), Diaz and Preneel (2004b), and Möller et al. (2003). In all cases,
the desired behaviour of dummy messages is to be indistinguishable from the
normal traffic in the network.

3.4 Other Technologies

Despite the focus on mixes within the anonymity community, there are other
approaches that seek to achieve anonymous communication. Many of these
approaches suffer from flaws either in their scalability or in the level of anon-
ymity that they provide. For this reason most are not the subject of intensive
ongoing research, although most have utility in specific application domains.

3.4.1 Dining Cryptographer Networks

In 1988, seven years after the mix (Chaum, 1981), Chaum proposed another
scheme for anonymous message sending. The dining cryptographer network
provides unconditional sender and recipient untraceability within a network,
given assumptions of cryptographic security between parties (Chaum, 1988).

The dining cryptographer network was originally described by considering
three cryptographers dining in a restaurant around a circular table. At the
end of the meal, the cryptographers are informed that the bill has been paid
by some anonymous party. The cryptographers desire to know whether one
of the dining parties or an outsider is the benefactor.

To determine the answer to this question while maintaining the anon-
ymity of the buyer, the cryptographers each flip a coin that is seen by both
themselves and their right-hand neighbour. Each states the parity of the two
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coin flips that they have seen: whether they were the same or different. If a
cryptographer was the party that paid for the meal they report an inverted
result for the parity of their observed coin flips. By following this protocol
the cryptographers can determine if one of the diners is lying. In the case
that a cryptographer has lied, the reported number of coin flips displaying
the same result will be even. If all parties had told the truth, the reported
number of flips will be odd. The desired information can be deduced without
revealing the identity of the buyer.

This approach can be generalised to a reliable broadcast network in which
participants share cryptographic keys. The results of the hypothetical coin
flip are broadcast one bit at a time into the network. If a participant wishes
to make a message public, they flip the status of their broadcast bit for those
bits that correspond to the high bits of their message. For each round a
default parity of the broadcast bits corresponds to a 0 bit in some message,
and an inverse parity of all broadcast bits corresponds to a 1 bit in the
message.

Chaum (1988) proves that, under the assumption of a reliable broadcast
channel and collusion of no more than n−2 participants in the network, this
approach provides unconditionally secure sender and recipient anonymity.

Dining cryptographer networks are impractical for large-scale systems.
The requirement for a reliable broadcast channel between all participants
causes the protocol to be fragile against active attackers who can flip bits and
thus potentially gain information. Waidner and Pfitzmann (1990) present
some approaches to resolving this problem, however there is no entirely sat-
isfactory solution to date.

In addition to being fragile, dining cryptographer networks are extremely
inefficient. Messages are passed at the rate of one bit per round on the
network, and rely on a large network of shared keys. Approaches to solv-
ing this problem are presented by Chaum (1988), however the logistics of
achieving these on a large-scale network are far too complex for widespread
implementations to be considered.

Despite the inefficiencies of dining cryptographer networks, they do pro-
vide an effective method to unlink actions and actors. For small-scale sys-
tems, such as board room voting, an implementation of the dining cryptog-
rapher network could find use.

3.4.2 Onion Routing

Onion routing aims to overcome the high latency inherent in mix systems.
The design was proposed by Goldschlag et al. (1996) as a method for hiding
routing information in applications that demand almost real-time network
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connections.
In onion routing, a data payload is wrapped with successive layers of

encryption corresponding to nodes in a chain of communicating servers. The
resulting packet, with multiple layers of encryption, conceptually resembles
an onion. Encryption is performed by the first node of a routing network,
which acts as a proxy server for future traffic. Each node along the route
peels off a layer of encryption, and forwards the resulting payload to the next
node in the chain. To defeat analyses of the decreasing size of each packet,
nodes pad outgoing data to a constant size.

Pure onion routing differs from a typical mix system, as described in Sec-
tion 3.1, in that an onion routing node does not necessarily perform explicit
mixing operations; onions are directly forwarded to the next node.

Onion routing functions via virtual circuits that are set up by initiators
before any content data is transmitted. Each node stores the predecessor and
next nodes in a circuit along with decryption keys for data. The initiator of
the connection encrypts its data with the successive encryption keys of the
routers in the chain and sends the data. Each onion routing node decrypts
the outermost layer and forwards the data to the next node in the circuit.
As each node is only aware of the next node in the circuit it is impossible for
an attacker to determine the entire path without compromising either the
entire circuit or the end-point nodes.

Onion routing is the subject of much ongoing research (Syverson et al.,
2000; Clayton, 2003; Dingledine et al., 2004a) as a method to achieve rela-
tively strong anonymity without the latency overheads of mix systems. The
reference implementation of an onion routing system is the Tor project, de-
scribed in detail in Section 3.5.5.

3.4.3 Crowds

Reiter and Rubin (1998) proposed the Crowds system as a method for provid-
ing anonymous web-browsing capabilities. The system relies on a network of
nodes, referred to as jondos, that forward web requests for other participants;
each actor functions as a node for other actors.

The crowds system builds persistent virtual circuits through a network
of nodes for each initiator by re-routing requests randomly. The aim of this
random path selection is to obscure the location of the original request. When
a user attempts to connect to a recipient through the network, a circuit is
initiated by selecting a random node. With a certain probability, that node
either forwards the request to another node, or fetches the website itself and
returns the information to the original requesting node. A circuit identifier is
maintained between these nodes, allowing the same path to be reused when
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the initiator requests new data. The path is periodically rebuilt as a measure
against long-term statistical attacks.

The crowds system is designed to overcome the threat model of multiple
corrupt nodes, and is not resistant against the global passive attacker. The
global passive attacker is able to observe the flow of message requests and so
trivially trace the initiator, thus breaking the anonymity of the system.

Shmatikov (forthcoming) shows that corrupted nodes can collude to in-
crease the likelihood that a given member of the crowd originated a request,
however the system is designed to provide a reasonably high level of pro-
tection against this predecessor attack. The predecessor attack, which is
identified in the original paper by Reiter and Rubin (1998), is analysed in
greater detail by Wright et al. (2002) who also apply the attack to a variety
of other anonymity systems.

3.5 Deployed Anonymity Systems

Chaum (1981) sparked serious research into online anonymity. Since then a
number of anonymity systems have been implemented and actively deployed.
The most famous historical anonymity services, and the leading contempo-
rary approaches, are reviewed here.

3.5.1 Remailers

The earliest deployed systems that provided anonymity to their users with
the techniques that we have discussed were remailers. These systems were a
development from real world postal remailers used to forward letters anony-
mously, and applied the concept to electronic mail.

Type-0 (anon.penet.fi)

The original electronic anonymous remailer system was a single machine
run by Johan Helsingius in Finland. This machine operated a simple re-
mailing policy in which users could send the server an email containing an
extra header specifying the ultimate destination of the message. The server
stripped technical identifying information from the email before forwarding
the email to its destination. A simple reply service was also provided by
which a user could set up a pseudonym on the server. All email to the
pseudonym would be forwarded to the owner’s real email address.

This system was tremendously popular, however the single server was
open to both legal and technological attacks. Notably, the nature of the
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server caused the administrator to be in possession of the identities of all
users.

anon.penet.fi was eventually shut down due to a combination of factors
resulting from legal attacks, and excessive load on the server and its oper-
ator. A user of the service began anonymously distributing material from
the secret teachings of the Church of Scientology. The church responded by
suing the user. In the course of the legal case, the logs and data stored on
anon.penet.fi were subpoenaed. This, in combination with allegations of
the distribution of child pornography through the server, caused its eventual
closure in 1996 after three years of providing anonymous service.

Type-I (Cypherpunks)

Members of the online cryptography advocacy mailing list Cypherpunks de-
veloped and deployed the Type-I or Cypherpunks remailer network. This
network used multiple servers and encryption for all messages. By encrypt-
ing emails with the keys of a number of servers, messages could be passed
through a series of nodes before reaching the final destination. This removed
the critical flaw of reliance on a single server with access to message content
that eventually caused the demise of the original Type-0 remailer.

The Cypherpunks remailer system also made use of reply blocks to allow
anonymous replies to emails. A reply block is a series of routing instructions
that allow the message to be delivered to a pseudonym. This data is included
in anonymous messages when sent, allowing the recipient to reply without
knowing the identity of the sender.

Type-II (Mixmaster)

Despite the lessons learnt from earlier work, the Type-I remailer network was
open to many attacks on the anonymity of users. In 1994, in an attempt to
rectify these problems, Cottrell developed the Type-II Mixmaster remailer
(Mixmaster; Möller et al., 2003).

Mixmaster was an improvement over the older Type-I remailer. Firstly,
it enforced fixed-length messages, with shorter messages being padded and
larger messages being broken up into multiple messages. This defeated trivial
traffic analysis based on message size. Secondly, Type-II remailer network
nodes each contain a message pool to increase the difficulty of performing
traffic analysis. This made Mixmaster the first widespread implementation
of the mix design of Chaum (1981).
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Type-III (Mixminion)

Mixminion is a remailer network jointly designed by members of the aca-
demic and remailer communities, and improved on the Type-II remailer by
including a secure reply capability (Danezis et al., 2003) as well as other
improvements in mixing strategy and security for users.

Many of the features used in Type-II remailers are employed by Mixmin-
ion to transport messages, however Mixminion added improved encryption
for links between mixes and frequent rotation of authentication keys for each
mix in order to prevent known attacks against earlier systems.

Mixminion includes a secure reply capability for anonymous messages
through single-use reply blocks. In this scheme, a message path is split into
two halves, the first of which is encoded into a reply block included with the
message. When sent, a message travels along its intended path normally.
When an anonymous reply is formed, the path encoded in the reply block is
used to determine the second half of path along which the reply travels. The
message therefore returns to the original sender along part of the original
route, with the first half of the return route being randomly chosen by the
mix. By treating replies no differently from standard messages when they are
passed through the network, this scheme allows forward and reply messages
to be indistinguishable.

3.5.2 Freenet

Clarke et al. (2000) presented an anonymous document publication and dis-
tribution service that uses encrypted data storage, geographical distribution,
and anonymous communication between nodes. Anonymity within the net-
work is provided both to the authors and to the readers of documents.

The original Freenet protocol is most similar to the Crowds system of
Reiter and Rubin (1998), with requests randomly redirected between nodes
before reaching their destination. As such, the anonymity that the system
provides is vulnerable to many of the attacks that mixes and onion routing
seek to prevent.

3.5.3 JAP

JAP (2004) is an anonymising proxy server developed and hosted at the
Technical University of Dresden, with certain nodes on the network hosted
by other universities. The JAP software uses a mix cascade approach to
provide anonymity, however the application of the network is geared towards
low-latency requirements such as web browsing.
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JAP gained some notoriety in 2003 when the German Federal Bureau of
Criminal Investigation successfully ordered the JAP service to record data
concerning connections for future analysis. This ruling was later overturned
by the District Court in Frankfurt (JAP Ruling, 2004). The legal situation
brought about by JAP highlighted the non-technical issues that surround
anonymity and privacy technologies.

3.5.4 PipeNet

PipeNet was proposed by Dai (1996) as a real-time anonymity system com-
parable to onion routing. Although the system design was presented only
in a rudimentary form, PipeNet is notable for its strong reliance on dummy
traffic. PipeNet, similar to onion routing, maintains virtual circuits between
an initiator and a responder. These circuits form persistent encrypted con-
nections that spans several intermediary nodes.

The PipeNet design enforces that each node on an established virtual
circuit should receive one packet of data tagged with that circuit’s identifier
per timeslice. Packets are then randomly reordered in the style of a standard
mix and sent out. In the case that a node does not receive a full quota of
packets from each circuit it will queue those packets that it has received until
the next timeslice.

The purpose of this strategy is to ensure that each circuit handled by
a node produces a uniform stream of traffic. Such a stream is therefore
hardened against timing or traffic analysis that can used to compromise other
real-time anonymity systems such as onion routing.

The PipeNet design was never implemented, although a similar approach
was employed by an early version of Zero Knowledge Systems’ “Freedom
Systems” architecture (Boucher et al., 2000). This design made use of traf-
fic padding between links rather than the end-to-end padding of PipeNet.
The use of traffic padding was subsequently dropped from the architecture
entirely, due to its bandwidth requirements.

3.5.5 Tor

Tor (Dingledine et al., 2004a) is an implementation of an onion routing net-
work designed to allow anonymous access to services that require low-latency
connections.

Tor presents a scalable implementation of onion routing that uses stan-
dard proxy protocols to anonymously forward existing services. The combi-
nation of low-latency overheads of the network with the integration of the
system into a standard proxy format and a simple user interface has allowed
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Tor to be more widely adopted than many previous anonymity services, which
have traditionally been weighed down with complex requirements for users.

Tor can provide anonymity not only for the user of the system, but also
can obscure the location of services such as web sites offered through the
network. This is achieved through the ability of a server to extend a circuit
into the network with no fixed client on the other end. Circuits in onion
routing are discussed in Section 3.4.2. A client using Tor can connect to this
extended service and relay requests through to the server without knowing
the server’s address. This provides censorship-resistance capabilities.

3.6 Summary

In this chapter we have examined a variety of anonymity systems. Many
of these are variations on a mix-based architecture, however we have also
described systems based on alternative approaches to anonymising users.
These systems, and their respective advantages and disadvantages, form the
basis of our later modelling work.

We now examine approaches towards the classification and simulation of
anonymity systems and their properties, and explore how these relate to the
anonymity technologies described in this chapter.
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Part II

Simulation
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Chapter 4

Anonymity Mechanisms

4.1 Introduction

Based upon the survey of the previous chapter, we now discuss four under-
lying mechanisms for providing anonymity in communicating systems. For
the purposes of this work, we consider a system to provide anonymity if it
prevents, to a greater or lesser extent, observers from determining the linkage
between the senders and recipients of messages passing through that system.

For illustration we consider systems in the form of a traditional computer
network, comprising a number of hosts connected by channels across which
messages can be passed. To anonymise such systems, the desired effect is to
introduce confusion as to the ordering of messages passing across the network,
when considered by an observer viewing all traffic passing across the network
channels. More simply, an observer with global access to network traffic must
not be able to link incoming messages to outgoing messages by observing the
order in which they are sent and received.

The mechanisms that we present here have been inspired by four funda-
mental mechanisms for introducing nondeterminism into processes in Hoare’s
Communicating Sequential Processes (CSP) process calculus (Hoare, 1985).
In this work we focus on a probabilistic and simulation-based interpretation
inspired by these mechanisms, rather than a formal mathematical abstrac-
tion.

We will now describe each of the four mechanisms that we have identified.

4.2 Hiding

To confuse observers regarding the relationship between messages passing
across the network, some messages may be hidden. As such, from the view-
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point of an observer, such messages happen eagerly and cannot be blocked
or delayed by the environment.

As observers are unaware of the details of hidden messages, it becomes
impossible to deduce directly the relation of input messages to output mes-
sages, although the flow of observable messages may, in some circumstances,
allow an observer to deduce some information concerning the occurrence of
hidden messages.

Hiding achieves anonymity through the restricting of observations possi-
ble by an attacker. This is most commonly expressed as a non-global attack
model that hides certain actors from an observer’s view. By restricting the
attacker to an incomplete knowledge of the system, confusion is introduced
as to the source of messages.

Existing anonymity systems do not typically rely on the hiding of mes-
sages as their basic strategy to achieve anonymity; indeed, many systems are
designed to provide anonymity even when an attacker can view all network
traffic. In almost all cases, however, hiding is assumed as a secondary method
to increase the confusion introduced into the system.

The most notable current example of a system that relies inherently on
a non-global attacker is the second-generation onion-routing project: Tor
(Dingledine et al., 2004a). In order to achieve the low-latency traffic required
for interactive usage such as web-browsing, Tor leaves itself open to traffic
confirmation attacks that allow an observer to link senders and recipients by
observing the arrival rates of packets passing between them. Despite this
possibility, the scale and decentralised nature of the Internet prevents such
an attack from being feasible for all but the most powerful adversaries, and
the Tor system can claim to offer reasonably strong anonymity in the general
case.

4.3 Spurious Events

As a contrast to hiding, that may be considered as removing messages, we
can also obscure messages to introduce confusion as to their source.

Spurious messages can be generated from a set of potential messages and
injected into the system. Any message from that set is thus obscured: it is
impossible to tell whether an observed message was a genuine message from
some user of the system, or a spurious message introduced in order to confuse
observers.

As spurious messages are still visible to an attacker, their behaviour re-
mains observable and potentially alterable. Spurious messages, from an at-
tacker’s point of view, are subject to all the delays or retransmissions of
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genuine messages. A more powerful attacker with the capability to delay,
modify or delete messages can interact just as easily with spurious messages.

This strategy is typically referred to as dummy traffic. Any messages
observed by an attacker may be the result of the passage of genuine messages,
or may be the result of fake messages generated either by intermediary nodes
or by initiators. Without considering real-world implications of bandwidth,
spurious events are an extremely powerful strategy for confusing observers.

Of particular interest is that spurious events prevent an observer from
deducing that a genuine event has ever occurred. In all other approaches
towards providing anonymity, the observation of a message provides an at-
tacker with the basic information that a message was sent. If any observed
message may be spurious, however, the attacker cannot even deduce this.

The problems of a system that implements such a strategy are easily
seen. Systems that constantly send messages without genuine content are
unlikely to be popular with system operators or other network users. In some
cases, however, an implementation of this type of system may not always be
considered infeasible as bandwidth capabilities increase. Additionally, there
are subtle factors that may allow observers to distinguish traffic even in the
presence of high volumes of dummy traffic that make this strategy far from
a panacea.

The unreasonable costs of introducing a high level of spurious events have
prevented the development of systems that rely solely on this strategy to gain
anonymity. The dining cryptographer network presented by Chaum (1988)
may be considered as using a form of this strategy, albeit combined with
other factors, but is rarely deployed in real systems. Due to the inherent
impracticality of dining cryptographer networks we have chosen not to focus
on applying our model to this case.

4.4 Pull Technologies

Many of the strategies employed by existing anonymity systems, and many
of the attacks and defences, assume that messages are “pushed” through the
network. This typical model relies on messages that travel through a net-
work with each node actively forwarding traffic according to timing rules and
flushing strategies. In contrast to this, a system may simply make messages
available in such a way that potential recipients can “pull” data out of the
network as they require.

The confusion in this approach is achieved externally. It is the environ-
ment, consisting of potential recipients and other nodes, that determine the
ordering of output messages, and not the node that currently holds the mes-



64 CHAPTER 4. ANONYMITY MECHANISMS

sage. In real-world systems this describes a variation on the standard mix,
but one that works according to a “pull” strategy – messages are pooled in
the mix until they are requested by another node. The behaviour of these
other nodes, and receivers, is what causes the sequence of messages to be
re-ordered, not the internal behaviour of the node itself.

The use of this strategy in providing anonymity is not widely seen in
real-world systems. Some forms of private information retrieval and message-
board systems, where users collect messages rather than receiving them au-
tomatically, may be considered as employing this strategy.

The potential advantage of such systems is that the responsibility for
introducing confusion into the sequence of messages does not rest solely on
the action of a single node; it is a property that emerges from the interactions
of a large number of users. This has the effect of decreasing the reliance on
any single node, whilst also potentially increasing the randomness in the
system by relying to a greater extent on the actions of unpredictable users.

4.5 Internal Randomness

Internal random, or pseudorandom, choice represents the most commonly
fielded strategy for achieving anonymity in existing systems. Chaum’s mix
and its many variants are systems in which messages are stored by a net-
work node until some criterion is reached, whereupon the internally stored
messages are sent out in random order. An attacker is, theoretically, unable
to determine the exact correspondence between individual input and output
messages.

It is also possible for this internal randomness to be applied to different
aspects of the system than the ordering of messages. A system may choose
not to re-order messages, but to decide whether or not to forward at all.
This can be considered the opposite of spurious events—causing confusion
by dropping messages rather than injecting them. Of course, this example
creates a system that is largely impractical due to the functional requirement
that messages entering the system should, at some point, be delivered to their
final destination.

Despite the clear limitations to such a scheme, there is some potential for
this idea in applications that do not have a requirement for perfect delivery.
Certain networked applications allow for a number of messages to be dropped
provided that the overall stream of data is of sufficient quality. Similarly,
spurious events, being superfluous to the “genuine” flow of data, may also be
dropped from those systems where they are employed. While it is likely that
an infeasibly large number of messages would need to be dropped in order
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to gain any useful effect, this approach should not be entirely ignored.
Another system that can be considered as relying on internal choice, is

the node-level routing behaviour of the Crowds system of Reiter and Rubin
(1998). As an alternative to dropping messages this strategy makes a decision
either to forward each message immediately to its ultimate recipient, or to
another node in the system. The Crowds system therefore cannot function
as a single node, relying instead on the interaction between multiple nodes
passing messages.

The Crowds system causes messages to be randomly routed through a
number of intermediary nodes before finally being delivered to the recipient.
This random routing is designed to prevent an observer from tracing a single
message. The system relies on a non-global attacker view, or the “hiding”
strategy, as each individual node still functions as a deterministic buffer that
cannot individually reorder messages.

4.6 Conclusion

The four strategies outlined above broadly cover the range of possible ap-
proaches that may be taken to anonymise users in communicating systems.
Some real-world systems may focus on a single strategy that neatly fits into
the classification presented here; others may combine strategies in order to
exploit advantages or alleviate disadvantages of the individual approaches.
In the next chapter we develop a method by which we can effectively quan-
tify the anonymity provided by differing strategies in order to compare their
relative effectiveness in anonymising users.
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Chapter 5

Analysis Methods

5.1 Introduction

The previous chapter described the nature of anonymous communication
systems according to a classification based on the fundamental strategy that
they employ to confuse an observer as to the flow of messages. In this chapter
we develop this idea further into a form suitable for quantitative analysis via
simulation and detail the analyses that we wish to perform on the behaviour
of these systems. This provides us with the required form for the simulation
experiments.

Our view of anonymity declares that for a system to provide anonymity
for some sequence of messages, it must randomly produce one of a number
of possible output sequences for that input sequence. The purpose of these
multiple output sequences is to confuse an attacker as to the possible location
of a given input message in the output sequence.

In order to quantify this randomness, and hence the anonymity of the
system, we are concerned not simply with the number of possible output
sequences, but with the level of confusion as to the possible location of any
given message in the output. As has been demonstrated by Diaz et al. (2002)
and Serjantov and Danezis (2002), the size of the set of participants that
could have sent a message fails to provide an accurate quantification in a
number of important cases. By examining the likelihood of a given message
coming from a given potential sender, a more useful characterisation of the
level of anonymity can be reached.

This can be demonstrated by considering a buffer that may produce,
with equal probability, either of two permutations of some input sequence;
and a second system that produces one of six given permutations for an input
sequence, but with a probability of 0.9 of preserving the input ordering. It
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can be shown that the second system is likely to be less effective in confusing
an observer than the first, despite there being a larger set of possible outputs.
The details of these calculations are shown in Section 5.2.1.

To measure the confusion in such systems, we turn to information theory
as presented by Shannon (1948). The information theoretic entropy of the
output sequence of some system with respect to the location of messages in
the input sequence provides a quantification of the level of uncertainty that
an attacker has as to the location of an observed input message in the output
sequence.

The nature of the specific choice of tests, and how they are simulated and
analysed, are discussed in greater detail below.

5.2 Shannon Entropy

Shannon’s work on information theory is concerned with the quantification
of the amount of information in systems and has found widespread use in
a variety of fields, but was originally developed to calculate the capacity of
communication channels and the limits of compression. The key concept
in information theory, entropy, provides a measure of the amount of uncer-
tainty associated with a discrete random variable, representing the average
amount of information required to describe the behaviour of that variable.
Information entropy is traditionally measured in binary bits.

The Shannon entropy, H , of a discrete random variable X is:

H (X ) = −
∑
x∈X

p(x ) log2 p(x ) (5.1)

where p(x ) is the probability that x ∈ X occurs.

5.2.1 Examples

The classic illustration of information theoretic entropy is its use to describe
the average information required to report the winner of a horse race. The
following example is based on that found in Cover and Thomas (1991):

In the first case, consider a horse race in which eight equally matched
horses compete. In such a case, each horse has an equal probability of win-
ning. The entropy in the system, according to Equation 5.1, can be calcu-
lated:
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H (X ) = −
∑
x∈X

p(x ) log2 p(x )

= −
8∑

i=1

p(wini) log2 p(wini)

= −
8∑

i=1

1

8
log2

1

8

= −
8∑

i=1

1

8
×−3

= 3 bits

As might be expected for a set of 8 uniform outcomes, we require 3 bits
of information to describe the system.

In the case that probabilities are non-uniform, fewer bits are required to
represent the outcome of the system. For a horse race with winning proba-
bilities (1

2
, 1

4
, 1

8
, 1

16
, 1

64
, 1

64
, 1

64
, 1

64
), the entropy may be calculated as follows:

H (X ) = −
∑
x∈X

p(x ) log2 p(x )

= −
8∑

i=1

p(wini) log2 p(wini)

= −1

2
log2

1

2
− 1

4
log2

1

4
− 1

8
log2

1

8
− 1

16
log2

1

16
− 4

1

64
log2

1

64
= 2 bits

Message Reordering Examples

Equation 5.1 may be used to verify the example of message reordering sys-
tems from Section 5.1: The first system presented there offers two possible
orderings of output with equal probability. We therefore calculate H (X1) in
the following way:

H (X1) = −(0.5 log2 0.5 + 0.5 log2 0.5)

= 1 bit

The amount of information required to describe the output of the first
system is 1 bit.
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The entropy of the second system, presenting six possible orderings, can
be calculated as follows:

H (X2) = −(0.9 log2 0.9 + 5× (0.02 log2 0.02))

≈ 0.7 bits

On average, this system requires roughly 0.7 bits of information to de-
scribe its output.

In the simulation experiments, we examine the distance between each
pair of messages in the output sequence that were consecutive in the input
sequence. This investigates the spreading effect on such message pairs by the
system, regardless of their overall position. Over a large number of simulation
runs, we build a distribution of the output distances for all such message pairs
in an experiment. Shannon entropy provides a method for quantifying the
amount of uncertainty that we observe in these distributions.

The specific focus on consecutive pairs of input messages is useful in that
it represents not only an underlying feature of the system under investiga-
tion, but also represents a very simple tagging attack that is applicable across
a wide variety of systems. A minimally active attacker can gain information
from a system by injecting a message into the system directly after an inter-
esting target message. By observing the output position of this message, the
attacker hopes to gain some information as to the possible location of the
target.

5.2.2 Conditional Entropy

If we are interested in two potentially related random variables we may con-
sider their conditional entropy. Specifically, we may calculate the conditional
entropy of one of the variables given the second variable. This quantity pro-
vides a measure of the amount of information that is revealed about the
second variable given a knowledge of the first.

As an illustrative example of conditional entropy, consider a bag contain-
ing two red balls and a blue ball. If a ball is randomly drawn from the bag,
the probability that the ball is blue is one-third and the probability that the
ball is red is two-thirds. This is case of standard entropy. From Equation
5.1 above, we can calculate the information entropy of the system to be:

H (X ) = −
(

1

3
log2

1

3
+

2

3
log2

2

3

)
≈ 0.92 bits
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On average, we will require 0.92 bits of information to describe the out-
come of this system.

If the experiment is repeated after replacing the ball that was drawn, the
probability of drawing a red or blue ball remains the same. If, however, the
ball is not replaced then we gain information regarding the possible outcome
of the second draw.

If we drew a blue ball in the first experiment, the only possible outcome
of a second draw is a red ball. If the first ball was red, there is now an equal
chance of drawing either a red or a blue ball; the outcome of the second
experiment is conditional on the outcome of the first experiment.

The conditional entropy of two discrete random variables is:

H (Y | X ) = −
∑
x∈X

∑
y∈Y

p(y , x ) log2 p(y | x ) (5.2)

For the case the above experiment without replacement of balls, the con-
ditional entropy of the second drawing given the first is therefore:

H (Y | X ) = −
(
p(b)

(
p(r | b) log2 p(r | b)

)
+

p(r)
(
p(r | r) log2 p(r | r) + p(b | r) log2 p(b | r)

))
= −

(
0 +

2

3
×
(

1

2
log2

1

2
+

1

2
log2

1

2

))
=

2

3
bits

If we know the outcome of the first experiment, the average number of
bits required to describe the output of the second experiment will be 2

3
. Note

that the first term in the above calculation reduces to 0. This corresponds
to the case that the first experiment resulted in a blue ball. In this case
the output of the second experiment must be a red ball, and all information
about the state of the system is known. The remaining case, where the first
ball drawn was red, results in a system in which there is an equal choice of
the two remaining options.

To relate this to a simulation approach, we may wish to describe the
distance between a pair of messages in the output sequence given that we
know the distance between those messages in the input sequence. This factor
would be of interest to an attacker seeking to gain statistical knowledge of
the system for the purpose of relating output messages to input messages.
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5.2.3 Experimental Factors

The simulation experiments that we perform are designed to demonstrate
the behaviour of various anonymity systems. Due to the rate at which the
number of possible permutations of output increase, it is not feasible for us
directly to calculate the distribution of output produced for a given input
sequence. We therefore select a representative feature of the systems that
allows us to explore the level of randomness produced by varying factors.

We use information entropy as a measure of the confusion that would
be experienced by an attacker in attempting to predict the behaviour of the
output ordering given knowledge of the input ordering of the entire system.
Again, it is not feasible to calculate this property directly for systems large
enough to be of any interest. We therefore choose to examine the behaviour
of pairs of messages that enter the system consecutively. We are interested
in the distance between those two messages on leaving the system, and the
variation in those distances as each simulation is repeated multiple times.

This method is approachable computationally, and has the advantage of
representing a simple attack possible against any anonymity system that fits
into the abstract model of Chapter 4. In a real-world system, considering
consecutive pairs of input messages is equivalent to an attacker “tagging”
a message by injecting their own message into the input sequence directly
following some target message.

We represent the amount of confusion concerning the possible distances
in output between consecutive input messages by calculating the entropy of
the distribution as estimated over a large number of simulation runs. As
the input distance between the messages is always one, and thus is not a
random factor, the conditional entropy of the output distances given the
input distances is equivalent to the simple entropy of the output distances1.

An ideally anonymous system, according to this quantification, demon-
strates a uniform distribution of probabilities for the possible output dis-
tances between messages. For each pair of messages that enter the system,
there should be an equal probability of any possible output distance. Intu-

1If we consider equation 5.2 with a single possibility for the result of the first variable:

H (Y | X ) = −
∑
x∈X

p(x )
∑
y∈Y

p(y | x )log2p(y | x )

= −1×
∑
y∈Y

p(y | x )log2p(y | x )

= −
∑
y∈Y

p(y)log2p(y)

This is equivalent to equation 5.1.



5.2. SHANNON ENTROPY 73

Figure 5.1: Output distances between perfectly mixed messages.

itively, this is the behaviour that we would expect from a Mix node with a
sufficiently large threshold—every message has the possibility of exiting the
system at any point in the output sequence.

In our simulations we consider not individual pairs of consecutive mes-
sages but every consecutive pair of messages in a run, and thus the output
distance between each pair is linked to the output of each other pair. If
we consider a system that accepts ten messages which are then randomly
reordered in the output, it is clear that a distance of nine messages between
input and output can occur in only one case. Once a pair has occupied this
possibility, the remainder of messages are constrained to a lower distance.
This is demonstrated in Figure 5.1. If the pair of messages marked a are
spread by the maximum distance, the pair marked b cannot possibly be
equally far apart.

The spread of results produced by our simulation and analysis therefore
represent the combination of probabilities for all messages in the system.
When considered as a complete system, we expect the spread of observed
output distances to fit as closely as possible with the possible number of
output distances available. In short, we expect the system to maximise the
entropy of output distances by fitting as closely as possible with a uniform
spread of outputs.

The relation between individual output possibilities and the combination
of all output possibilities is shown in Figure 5.2. Note the gap in the centre
of each histogram showing the impossibility of two messages occurring at the
same position in the output sequence.

A number of approaches to quantifying the level of randomness in the
output sequence were considered in preliminary experiments.
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0 0

Figure 5.2: Output pairings in a perfect mixing system (left) and output
pairings of all consecutive pairs in a perfect system (right).

Random pairing

To explore the entire range of potential input and output, one possible ap-
proach is to select random pairs from the input compared against their re-
spective distances in the output sequence. By selecting initially random
pairings, however, no information is gained from the input sequence; if mes-
sage distances from the input sequence are drawn with equal probability then
the distances in the output will typically also display only the spread of pos-
sible distances. Such selection reveals little more than the possible spread of
distances in the output sequence without revealing any underlying structure
of the likelihoods of such outcomes with respect to the input distances. We
therefore reject random selection of pairings as a useful method to reveal the
behaviour of the systems from our model.

Structured Pairing

A more structured approach is the selection of a number of particular po-
sitions in the input sequence. The comparison of output distance to input
distance can then be made for all combinations of any two messages that fall
at these positions. This approach suffers from arbitrarily enforcing the selec-
tion of pairs which have no special significance to the nature of the system,
and artificially selects for pairings of particular distances. In the absence of
any compelling reason why this selection of pairings should be chosen, the
approach was discarded.

Non-consecutive Pairing

As a natural extension of the consecutive pairing approach, it would be pos-
sible to select pairings that are separated by a given number of messages and
to process all such pairings. There is nothing intrinsically wrong with this
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approach, although the usefulness of ever increasing input distances seems
small when considered in light of the computational requirements of such an
exhaustive approach.

Consecutive Triples

A second possible extension from consecutive pairings would be to examine
consecutive triples rather than pairs. The relative spread of triples in the
different systems could potentially reveal more information concerning the
spread of possible output messages. Taking this idea to its logical extreme is,
of course, to examine the entire set of possible unorderings of the input se-
quence. The computational requirements for such an approach, of calculating
the distribution over all possibilities, are clearly infeasible. With these con-
siderations in mind, consecutive pairings appear the most viable compromise
between computational constraints and information revealed. Examining the
distribution of triples of messages would, however, be a simple possibility for
future work based on this approach.

5.3 Building the probability distribution

Our simulation experiments are capable of giving only an approximation
to the genuine probability distribution of output message pairings in the
system. As such, we use the simulation results to build an approximate set
of probabilities that may then be used to calculate an approximation to the
entropy of the real system.

Our method of estimation is simple: each experiment is repeated a large
number of times and the distance between consecutive message inputs is
tallied. The tally of results is then averaged and normalised to result in
an approximation of the probability distribution of output pairings for that
system. To counteract potential effects of a single set of initial starting
conditions, this procedure is repeated for a number of randomly generated
messages taking random paths through the network. The mean average and
standard deviation of these results are used in the final comparison of system
effectiveness.

5.3.1 Example

We show here a simple example of experimental results being used to cal-
culate the probability distribution as described above. The details of the
simulator and its input and output are shown in detail in the next chapter.
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Raw Results

A set of results from the simulation experiments is given in Figure 5.3. The
preamble shows the setup parameters of the simulation. In the case shown,
a single sender is created with a sequence of four messages. Each message
travels over a single hop before being delivered to a receiver. A single mix
node is created to pass messages. Finally, the list of actors in the system is
reported, along with the type of each actor. Those actors marked “SEND”
create messages, those marked “PASS” function as intermediary nodes and
those marked “RECEIVE” are valid destinations for messages.

Below the preamble, details of three runs are shown. The events occurring
in each run are reported in a time-ordered sequence. Each event takes the
form ( <owner>.<id>, <sender>, <receiver> ) , where <sender> and
<receiver> refer to the sending and receiving actors for that event, not
for the message. The event (0.02, 1, 2) therefore refers to the third
message2 originally sent by actor 0 being passed from actor 1 to actor 2.

These raw results are processed to form a tally of distances between mes-
sages in the output. This is achieved by identifying the sequence of input
events, in which the sender of the event is of the type SEND; and the sequence
of output events, taken as those events where the receiver is of type RECEIVE.

Each consecutive pair of messages in the input sequence are then identified
in the output sequence. The distance between these messages in the output
sequence, as measured by their location in the output sequence, is calculated.
The distance between each pair of consecutive messages is calculated for the
entire run of simulations.

This forms a set of initially processed results as represented in Figure
5.4. I1, I2, Id refer respectively to location of the first and second messages
in the pair being considered in the input sequence and the distance between
them. As these messages are consecutive, Id will always be 1. O1,O2,Od

give the corresponding locations in the output sequence of messages and
their distance: O2 −O1.

Finally, the results shown in Figure 5.4 are aggregated to create a tally
of the number of observed output distances over all runs of the simulation.
This produces a set of results such as that seen in Figure 5.5. This provides
an estimation of the output distribution for that set of runs.

The above procedure is repeated for a number of fresh simulations with
different initial conditions, varying the paths taken by messages and the input
ordering. The purpose of this is to reduce any effects that may be caused by
particular message behaviours. For the experiments shown in Chapter 7, 30
sets of initial conditions were used in each.

2Message, and actor, identifiers are indexed starting from zero.
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Creating 1 multiple sender(s). Messages: 4. senders: 1, hops: 1

Creating 1 threshold mix(es). Pool Size: 16, tock_limit: 16

Creating 1 receiver(s).

Actor 1: SEND

Actor 2: PASS

Actor 3: RECEIVE

Run 1 of 3.

(0.00, 0, 1)

(0.01, 0, 1)

(0.02, 0, 1)

(0.03, 0, 1)

(0.02, 1, 2)

(0.01, 1, 2)

(0.03, 1, 2)

(0.00, 1, 2)

Run 2 of 3.

(0.00, 0, 1)

(0.01, 0, 1)

(0.02, 0, 1)

(0.03, 0, 1)

(0.00, 1, 2)

(0.02, 1, 2)

(0.03, 1, 2)

(0.01, 1, 2)

Run 3 of 3.

(0.00, 0, 1)

(0.01, 0, 1)

(0.02, 0, 1)

(0.03, 0, 1)

(0.01, 1, 2)

(0.02, 1, 2)

(0.03, 1, 2)

(0.00, 1, 2)

Figure 5.3: Example results from a small simulation.
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Run I1 I2 Id O1 O2 Od

1 0 1 1 3 1 −2
1 1 2 1 1 0 −1
1 2 3 1 0 2 2
2 0 1 1 0 3 3
2 1 2 1 3 1 −2
2 2 3 1 1 2 1
3 0 1 1 3 0 −3
3 1 2 1 0 1 1
3 2 3 1 1 2 1

Figure 5.4: Example calculated distances between messages.

Message distance Number observed
−3 1
−2 2
−1 1
0 0
1 3
2 1
3 1

Figure 5.5: Example tally of output distances for a specific set of input
messages.

The results of these multiple simulations are then combined by calculating
the mean and standard deviation for each observed output distance, result-
ing in an approximate output distribution for the system with the standard
deviation providing error bounds. This distribution is then used to produce
both histograms showing the distribution of output, and to calculate the
information theoretic entropy of that system.

The data is in an appropriate form to produce a histogram, an example
of which is shown in Figure 5.63.

3This figure shows the results of a 4-node mixing system with a threshold of 16 messages
processing 64 messages. The simulation was run 1024 times for each of 30 initial starting
conditions.
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Figure 5.6: Example output graph from a set of simulations.

5.4 Result Significance Testing

The simulation experiments investigate the level of randomness introduced
into the sequence of messages by a variety of anonymity strategies. It is
desirable to apply statistical testing to ensure that the results of the simula-
tion experiments are a true representation of the underlying structure of the
systems, and not the result of random effects.

A feature of the systems under simulation is that the distribution of the
spread of output messages is not known. Standard parametric statistical
tests rely on a known parametrised distribution, most typically the normal
distribution. As we know little about the distribution of results beyond the
fact that it is not normal, we must apply non-parametric testing to the results
of the simulations in order to gain confidence in the results.

5.4.1 Null hypothesis testing

The standard approach in statistical testing is to formulate a null hypothesis
to be refuted by the observed data in support of an alternative hypothesis.
The null hypothesis is presumed to be true until rejected at an acceptable,
predefined level of confidence.

The null hypothesis presents a default assumption for the behaviour of a
system. Suppose that a comparison is made between two populations with
respect to some feature of interest. As an example, we may wish to compare
the number of encrypted emails sent by samples of two populations, one a
sample of computer scientists and the other being a sample of philosophers.
The null hypothesis would be that both samples were drawn from the same
distribution; to which we would then apply an appropriately chosen statistical
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test for homogeneity at a given confidence level.

The results of such a test allow us either to reject the null hypothesis
at the given level of confidence, or not to reject the null hypothesis at the
given level of confidence. The applied test cannot cause us to accept the
null hypothesis, nor can we take the lack of rejection as supportive of a prior
belief in the validity of the null hypothesis.

The confidence level of a statistical test represents the probability that the
results of the test may be incorrect. At a confidence level of 90%, there is a
10% chance that the rejection of the null hypothesis was caused by the result
of a statistical fluctuation in the data. Typically, a test for the homogeneity
of two distributions relies on observing a sufficiently large deviation between
the two distributions. At higher and higher levels of confidence, the size
of the deviation required in order for the test to reject the null hypothesis
becomes increasingly large; rejecting the null hypothesis therefore becomes
increasingly difficult.

5.4.2 Statistical tests for homogeneity

We are interested in comparing the results of our simulation runs against
each other in order to test whether the variation in the systems is reflected in
the output distribution of message pairing. There are a number of common
statistical tests used to compare two such data sets. The tests that were
considered for application to the results of the simulation runs are briefly
discussed here. A useful overview of the methods shown here is the work of
Siegel (1956).

Student’s t Test

One of the most well-known tests for equality between two distributions
is Student’s t-test, developed by Student (1908), although the name itself
applies to a family of tests with slightly differing assumptions. Student’s
t-test applies the null hypothesis that the means of two normal distributions
are equal, assuming equal variance of the distributions. An alternative to
Student’s t-test, known as Welch’s t-test, relaxes this assumption of equal
variance.

A fundamental assumption of all Student’s t tests is that the two samples
are drawn from normal distributions. This makes the test inapplicable to the
analysis of the distribution of output pairing distances for the systems we
have examined, as there is no guarantee that these distributions are normal.
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χ2 Homogeneity Test

The χ2 test is an extremely popular nonparametric test for discrete or binned
data that may be used to test the hypothesis that two samples are drawn
from the same underlying distribution.

Although this test at first appears ideal for the sampled distributions
produced by the output of the simulation experiments, the χ2 test is largely
applicable only for cases with a small number of bins that each contain a
relatively high number of values. The underlying χ2 distribution, on which
the test is based, is parametrised by the number of degrees of freedom in the
sample data. This parameter relates to the size and number of parameters
in a given sample, representing the amount of information remaining in the
sample as parameters are learnt.

The χ2 test is mainly applicable to samples with relatively low degrees
of freedom; it is thus not easily applicable to our simulation experiments
with large sample sizes and a high number of bins. Indeed, the results of
the simulator contain enough bins of data that they begin to approximate
a continuous distribution, and the resulting degrees of freedom make the χ2

test far less applicable. We therefore consider tests that treat data of this
form.

Mann-Whitney U test

The Mann-Whitney U test (Mann and Whitney, 1947) is a nonparametric
method for testing whether two samples are drawn from the same distribu-
tion, the null hypothesis being that this is the case. The test relies on testing
that the probability of values from one sample being greater than that of the
second sample is sufficiently close to 0.5.

The Mann-Whitney test is applied in situations where the underlying
distribution is continuous or ordinal; that is, that there exists a total order-
ing amongst all observations. The fact that no two observations have the
same value is of importance in the test itself, which relies on ordering the
observations from both samples into a single ranked series.

This feature makes applying the Mann-Whitney test to the result of the
simulation experiments awkward, as the binning of the data causes collisions
between values of the two distributions. The Mann-Whitney test, therefore,
is less forgiving of the discrete nature of the data from the simulation results.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is a nonparametric statistical test that allows
for a variety of comparisons of two population samples where the underlying
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distribution of each is unknown. In the context of the simulation experiments
detailed in this and the previous chapter, the Kolmogorov-Smirnov test allows
for a degree of confidence in the differences observed between experimental
runs with differing parameters.

The Kolmogorov-Smirnov test compares the cumulative frequency distri-
butions of two samples in order to determine whether they were drawn from
the same distribution. The null hypothesis in this case is that the distribu-
tions of the two samples are equal. If we observe a critically large difference
between the two cumulative distributions then we can reject this null hypoth-
esis and say that the distributions from which the two samples were drawn
are different at the given confidence level.

5.4.3 Details of the Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test can be applied in a number of ways in or-
der to reach various conclusions concerning sample data. In its one-sample
case the Kolmogorov-Smirnov test is used to test goodness of fit between ob-
served sample data and some hypothetical distribution, such as the normal
distribution.

The two-sample case tests whether two sets of sample data are drawn
from the same distribution. This test is based on the assumption that sam-
ples drawn from the same distribution exhibit similar cumulative frequency
distributions. In the case that the two samples are drawn from different
distributions, their cumulative frequency distributions are likely to differ by
some critical value. The critical value in the Kolmogorov-Smirnov test, the D
value, is drawn from a known distribution according to the level of statistical
error that we are willing to accept for the test.

The two-sample test is performed in the following manner:

1. Build the cumulative frequency distribution for each sample.

2. Find the greatest difference observed between the value of the two
cumulative frequency distribution.

3. Compare this maximum distance with the critical D value appropriate
for the sample size and significance level.

The Kolmogorov-Smirnov two-sample test can be applied in two senses
to ascertain different features of sample distributions. We examine these two
methods here.
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One-tail test

The one-tail test is used to determine whether the first sample’s cumulative
frequency distribution is stochastically larger than that of the second sample.
A distribution X is said to be stochastically larger than a second distribution
Y if, for the two cumulative distributions F (X ) and G(Y ), F (A) 6 G(A)
for all A.4

In the one-tail test both the sign and the value of the largest difference
between the two distributions is considered, that is:

D = max (SX (x )− SY (x ))

As we are not generally concerned with whether a given sample is “better”
than another in these tests, this information being more effectively gained
from other sources, we do not apply the one-tail test here. The concept of one
distribution being stochastically larger than the other would be misleading in
this case as higher values are not “better” in our scale. Were we to plot the
absolute, rather than signed, distance between output messages there would
be some justification in applying the one-tail test, however we would have lost
important information regarding the possibility of message positions being
reversed in the output sequence.

Two-tail Test

The two-tail version of the Kolmogorov-Smirnov test is concerned solely with
whether the two samples under investigation were drawn from the same dis-
tribution, and it is this test that we apply. The difference between the one-tail
and the two-tail test occurs in the comparison of the maximum difference be-
tween the two cumulative frequency distributions. In the two-tail test, the
absolute value of the largest difference is considered:

D = max |SX (x )− SY (x )|

This test reveals whether the two samples are drawn from differing under-
lying distributions. The test makes no assumption of one distribution being
better or larger than the other. It is this approach that we take towards
analysing our data.

4The direction of the comparison operator initially appears counter-intuitive. For two
cumulative frequency distributions, the distribution with a lower value at any given point
has a higher proportion of its values concentrated in the higher end of the scale of possible
results and is thus larger.
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Significance Level Critical D value

0.10 1.22
√

n1+n2

n1n2

0.05 1.36
√

n1+n2

n1n2

0.025 1.48
√

n1+n2

n1n2

0.01 1.63
√

n1+n2

n1n2

0.005 1.73
√

n1+n2

n1n2

0.001 1.95
√

n1+n2

n1n2

Figure 5.7: D values large enough to reject the null hypothesis at the given
level of significance. n1, n2 refer to the number of observations in each sample.
Values in this table taken from (Siegel, 1956).

Significance levels

When testing the null hypothesis, a statistical test is generally designed to
inform us whether or not we have observed a result that allows us to reject
that hypothesis. Taking a probabilistic approach allows the possibility that
we will observe, by chance, results that represent the extremes of the under-
lying distributions from which we have drawn our samples. In these cases it
is possible to gain a skewed perspective of the nature of such a distribution.
Statistical tests therefore contain a parameter that takes into account the
possibility of such extremely unlikely events occurring.

The Kolmogorov-Smirnov test compares the observed difference between
the cumulative frequency distributions against a critical D value. If the dif-
ference between the cumulative frequency distributions exceeds the D value
for a given significance level, the null hypothesis is rejected and the data is
assumed to be drawn from different populations. A table of critical D values
for the Kolmogorov-Smirnov two-sample test is given in Figure 5.7.

Again, it is important to note that null hypothesis in the Kolmogorov-
Smirnov test is that the distributions of the two samples do not deviate. The
results of the test are therefore that the null hypothesis can be rejected at
the given α, implying that the probability that the distributions are different
is at least 1− α; or that the null hypothesis cannot be rejected at the given
significance level, implying that the probability that the distributions are
different is less than 1− α. It is not possible for the test to accept or prove
the null hypothesis.

In our tests, we choose a high significance level of 99%, α = 0.01. This
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value represents a high confidence that the rejection of the null hypothesis
is true, based on a large number of simulation runs for each variation in
parameter.

5.4.4 Example Application

We show here an example application of the Kolmogorov-Smirnov test taken
from the results of the simulation experiments.

In the first case, we do not expect the Kolmogorov-Smirnov test to reject
the null hypothesis that two sets of results are drawn from the same distri-
bution at the given confidence level. To demonstrate, we select the spread
of output distances observed for consecutive messages under two runs of the
simplest Mix experiment.

Equal distributions

Figure 5.8 shows the frequency of observed output distances from a single
mix node with a threshold value of 16 messages. Over the course of the
simulation, 64 messages are passed through the node. (Both histograms
show the results of a separate single runs of the simulator.)

The output spread of the results is not of particular interest at this point,
however it can be seen that the two graphs appear similar. Figure 5.9 shows
the results of applying the Kolmogorov-Smirnov two-sample test to the two
sets of aggregate data, the null hypothesis being that the two samples were
drawn from the same distribution.

Note that the significance level is reported by the implementation as
the probability of accepting an error, rather than the confidence level itself.
We show several confidence levels for the purpose of illustration; our chosen
confidence level, 99%, is marked with an asterisk. The values shown as a
result of each test represent the D value for the samples, as described in
Section 5.4.3, against the critical D value for that confidence level as shown
in Figure 5.7. The null hypothesis is rejected if the D value for the samples
is greater than or equal to the critical D value.

The null hypothesis that the two sets of data are drawn from the same
distribution cannot be rejected for these two sets of results, even if we are
willing to consider a relatively high probability that the observed result oc-
curred by chance. This result is consistent with the idea that the observed
graphs are representative of the underlying model.
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Figure 5.8: Comparison of result sets from individual experiment runs. Both
show a single mix with flushing threshold 16.
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Significance levels:

0.1: Null hypothesis not rejected

(distributions appear the same).

=> ( 0.0036892361111111 < 0.00679288989860745 ).

0.05: Null hypothesis not rejected

(distributions appear the same).

=> ( 0.0036892361111111 < 0.00757240185418536 ).

0.025: Null hypothesis not rejected

(distributions appear the same).

=> ( 0.0036892361111111 < 0.00824055495896642 ).

* 0.01: Null hypothesis not rejected

(distributions appear the same).

=> ( 0.0036892361111111 < 0.00907574633994274 ).

0.005: Null hypothesis not rejected

(distributions appear the same).

=> ( 0.0036892361111111 < 0.00963254059392696 ).

0.001: Null hypothesis not rejected

(distributions appear the same).

=> ( 0.0036892361111111 < 0.0108574879526922 ).

Figure 5.9: Example output of Kolmogorov-Smirnov test implementation
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Unequal distributions

Here we demonstrate use of the Kolmogorov-Smirnov test to show that ex-
periments conducted with different parameters result in samples that are
drawn from statistically significantly different underlying distributions. This
supports our view that the change of parameter has a statistically significant
effect on the behaviour of the system.

We demonstrate here an example drawn once again from the single mix
node experiments. In Figure 5.10 the top graph is a frequency plot of the
output distances for a node with threshold 16. The bottom plot is of a node
with threshold 12. Applying the Kolmogorov-Smirnov test reveals that the
underlying distributions show a statistically significantly difference.

Figure 5.11 again shows results of the statistical significance test. Here,
the test rejects the null hypothesis at the 99% level, providing a reasonable
level of confidence that the two samples are drawn from differing underlying
distributions and thus represent a statistically significant difference in the
behaviour of the two systems.

5.5 Summary

In this chapter we have discussed the mathematical basis for the analyses
that we apply to the results of our simulation experiments. We have detailed
the notion of information-theoretic entropy that underlies our quantification
of the effectiveness of the systems described in the model of Chapter 4, and
shown the application of this notion to the results of the simulator. We have
also shown the methods that we employ in order to gain confidence in the
statistical significance of our analyses.



5.5. SUMMARY 89

 0

 1000

 2000

 3000

 4000

 5000

 6000

-30 -20 -10  0  10  20  30

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

 0

 1000

 2000

 3000

 4000

 5000

 6000

-30 -20 -10  0  10  20  30

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

Figure 5.10: Comparison of result sets from different experiments. Top: a
single mix with threshold 16. Bottom: a single mix with threshold 12.
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Significance levels:

0.1: Null hypothesis rejected

(distributions appear different).

=> ( 0.0301959325396826 >= 0.00679288989860745 ).

0.05: Null hypothesis rejected

(distributions appear different).

=> ( 0.0301959325396826 >= 0.00757240185418536 ).

0.025: Null hypothesis rejected

(distributions appear different).

=> ( 0.0301959325396826 >= 0.00824055495896642 ).

* 0.01: Null hypothesis rejected

(distributions appear different).

=> ( 0.0301959325396826 >= 0.00907574633994274 ).

0.005: Null hypothesis rejected

(distributions appear different).

=> ( 0.0301959325396826 >= 0.00963254059392696 ).

0.001: Null hypothesis rejected

(distributions appear different).

=> ( 0.0301959325396826 >= 0.0108574879526922 ).

Figure 5.11: Results of the Kolmogorov-Smirnov test for experiments with
differing parameters.



Chapter 6

Simulation

6.1 Introduction

The model presented in Chapter 4 provides a classification of anonymity
systems according to the method that they employ in order to introduce
randomness into the output sequence of messages.

This approach allows us to check for the existence of anonymity in some
system model, but does not immediately provide a quantification of this an-
onymity. To achieve a quantification based on this model, we must therefore
calculate the level of randomness introduced by the strategies presented in
the previous chapter. This allows us to judge the effectiveness of these strate-
gies in confusing an observer attempting to link initiators and recipients.

By casting our systems into the form of a simulation we lose the purity
of a highly abstract model but gain the ability to apply statistical analyses
to the behaviour of the models. This approach has led to the development
of the simulation and analysis tools described below.

6.2 Quantification Approach

There are a number of existing approaches towards quantifying the effec-
tiveness of anonymity systems. The most widely referenced of these is the
anonymity set of Chaum (1981), however this approach is appropriate only
for a rough quantification of anonymity due to its assumption of uniform
linkage probabilities between actors. To analyse the systems proposed in
Chapter 4 we require a more detailed approach.

A significant development over the anonymity set was the information
theoretic metric, proposed with slight variations independently by Diaz et al.
(2002) and Serjantov and Danezis (2002). These quantifications take account

91
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of the varying probabilities in linkages between senders and recipients. Unfor-
tunately, both proposed metrics are applicable mainly to mix-based systems
and their use in more general strategies remains an open problem. As such,
we cannot directly apply either of these metrics in comparing the systems we
propose.

Other metrics, such as that of Wright et al. (2002) have relied on the abil-
ity of different systems to resist attacks designed to link senders to recipients.
This can allow fundamentally different systems to be compared to an extent,
however the attacks that have been employed in previous work have made
particular assumptions regarding the nature of the systems to be compared.
This restricts the ability of these approaches to compare the entire range of
possible anonymity systems that we propose.

As such our approach to quantification attempts to be as general as pos-
sible both in term of its applicability to a wide range of systems, and to its
practicality in implementation. Our quantification relies on an information-
theoretic entropy measurement, however this is built by observing the dis-
tances introduced between messages as they pass from sender to recipient in
simulated networks of differing anonymity strategies.

The specifics of the quantification method are discussed in detail in Chap-
ter 5. In this chapter we describe the design and implementation of a simula-
tor that allows for the strategies proposed in the abstract model of Chapter
4 to be subjected to statistical analysis.

6.3 Purpose

We simulate networks of actors described by the abstract model of Chapter
4 in such a way that we can observe their behaviour in an approximation of a
genuine network. The purpose of these simulations is to allow for a quantifi-
cation of the anonymity provided by the various strategies we propose. The
networks in which we are interested consist of senders creating messages that
are passed across a number of intermediary nodes to corresponding receivers.

The network nodes in our model typically implement some form of anon-
ymity strategy as described in Chapter 4. Messages travel over a number of
hops, being passed from node to node before being delivered to the receiving
actor. An example network of this form is show in Figure 6.1.

Our simulations allow us to examine the flow of messages in these net-
works. These observations are then used to quantify the level of anonymity
provided by the specific anonymity strategies.

The abstract model presented in Chapter 4 is concerned with randomness
in output sequences of systems. At a basic level, we assume that the greater
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Figure 6.1: Example network structure.

Figure 6.2: Flow of experiment processing.

the randomness in a system’s sequence of output messages relative to its
sequence of input, the more effective the system is at providing anonymity.

In order to quantify randomness, we calculate the entropy of the distri-
bution of messages in the output sequence of each simulation for a number
of fixed input sequences. This value represents the level of uncertainty that
an attacker has for a system, given knowledge of the input sequence. The
specifics of these calculations are discussed in more detail in Section 6.7. A
full description and motivation of the quantification method is presented in
Chapter 5.

The purpose of the simulator is to model a range of anonymity systems in
a form suitable for statistical analysis. As we are concerned with the ability
of an adversary observing network traffic, the simulator bases its analysis on
sequences of observable communications.

6.4 Design

The systems that we analyse typically consist of multiple initiators, nodes
and recipients. The simulator is built around Actor objects that fulfil these
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roles. To represent the network itself, communication between actors takes
place across a universal Environment object that also governs the scheduling
of parallel execution.

The simulator is divided into an event-processing engine that generates
sequences of events showing the interaction of Actor objects, and a set of
processing scripts that collate these events and perform statistical analyses.

Experiments are defined by the sets of actors that comprise the network
and the messages that are sent. The simulation engine then generates the
sequences of events resulting from the passage of messages across the network.
Results are processed by an analysis script to describe both the spread of
possible output sequences and the entropy of the distribution of messages in
these sequences. Figure 6.2 shows this flow of execution.

6.5 Engine

The simulation engine produces the sequences of events that are used in our
analyses. These events are generated by the interaction of node processes in
an abstract network. Senders and recipients communicate with each other via
a series of intermediary nodes. Simulations take place within an environment
that regulates the actor processes and provides a medium of communication
allowing messages to be passed from actor to actor.

The engine is therefore based around the interactions of Actor objects
within the Environment . Each anonymity strategy defined in the model of
Chapter 4 is implemented as a subclass of a basic Node class. This class is
itself derived from the base actor. In addition to the various node classes there
are Sender and Recipient actors that act as the endpoints of communication
in the network. There are also a number of special senders with differing
behaviour derived from the base sender class. The hierarchy of actor classes
is shown in Figure 6.5.

6.5.1 Network Scheduling and Routing

The simulation engine applies random scheduling to the parallel processes in
the simulated network, with a simple fairness criterion to prevent nodes from
remaining idle.

The fundamental action taken by each actor occurs in its step() function,
causing that actor to send a message from its internal queue, generate a
dummy message, or to perform some other action.

The simulator divides time into epochs, in which each actor’s step()

function is called exactly once. The activation of actors is randomised, but
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Figure 6.3: Simulator Actor Class Hierarchy

each is called only once per epoch. This approach to scheduling nodes’ step
functions is intended to approximate, with a simple level of enforced fairness,
an asynchronous network of nodes that may experience delays in message
routing.

The main processing loop of the simulation continues until all messages
have been delivered to their ultimate recipient actor.

6.5.2 Input format

Experiments are defined by a series of Actor definitions, each of which defines
zero1 or more actors and their parameters. An Extended Backus-Naur Form
(EBNF) grammar for the input file is shown in Figure 6.5.2. For the sake of
simplicity, we omit definitions of the alphanumeric, number and empty type.

A simple valid input file is given in Figure 6.5. The actor definitions in
this example show, in turn:

1A definition may specify that no actors of a defined type should be created in the
simulation run. This is useful in those cases where batch processing of experiments requires
a particular actor type to be removed from certain experiments.



96 CHAPTER 6. SIMULATION

<input-file> ::= <input-block>*

<input-block> ::= <comment> | <actor-definition>

<actor-definition> ::= Actor <actor-name> { <parameter-list> }

<quantifier>

<quantifier> ::= : <number> | <empty>

<actor-name> ::= Sender | Receiver | MultipleSender |

FloodSender | MultipleFloodSender |

ThresholdMix | DropNode | FloodNode

<parameter-list> ::= <alphanumeric> = <number>;

<parameter-list> | <empty>

<comment> ::= # <alphanumeric>

Figure 6.4: EBNF grammar for the simulation engine input file.

• A single sending actor that will transmit 32 messages, each of which
travels over a single hop before reaching a recipient.

• Four threshold mix nodes, each with an internal pool of 16 messages.
In order to prevent messages from becoming permanently stored in the
node, a timeout is specified that will cause all messages in that node to
be flushed after 32 epochs without the node having received any events.

• A single receiving actor that takes no special arguments.

Each actor is defined using the Actor keyword followed by an actor type
that corresponds either to a sender, recipient or to a specific anonymity
strategy as defined in the model.

An actor definition takes a number of parameters that define that ac-
tor’s behaviour. These parameters control factors such as the pool size of a
threshold mix, or the number of messages sent by a sender before it termi-
nates. Following the definition of parameters, an optional argument allows
the simulator to create multiple copies of the preceding actor definition.

The valid actor types implemented in the simulator, and their associated
parameters, are shown in Figure 6.6.

6.5.3 Output format

The simulation engine outputs a time ordered sequence of events, where each
event represents the sending of a message from one actor to another. Each
instance of a message being transmitted between two actors is reported in
the form:
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# Experiment 01:

# Investigate a simple mix.

Actor Sender {

message_hops = 1;

send_amount = 32;

}

Actor ThresholdMix {

pool_size = 16;

tock_limit = 32;

} : 4

Actor Receiver {}

Figure 6.5: Sample simulator input file

( <Initiator>.<Epoch><EpochID>, <Sender>, <Recipient> )

where the Sender and Recipient actors refer to the actors involved in the
specific hop of this message. The Initiator is the actor that ultimately
created and sent the message. Epoch is a count of how many step() actions
have been taken by the actor, while EpochID refer to the number of messages
sent by the actor in this particular Epoch. These values together form a
unique identifier for each message created by a given Initiator.

Dummy messages are not created with valid message identifiers. In such
messages the identifier, usually the combination of Epoch and EpochID, is
set to -1-1.

Example output from the simulation engine is given in Figure 6.7.

6.6 Implementation Details

Our classification describes four explicit methods for introducing random-
ness into the output sequence of a system. We investigate each of these,
implemented as an actor in the network, via simulation.

The simulation necessarily introduces details that can be abstracted away
in a more abstract model. We discuss here the implementation issues that
arise from translating the model into an executable form, and from imple-
menting the design shown above.
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Creating 1 sender(s). Messages: 16. hops: 1

Creating 1 threshold mix(es). Pool Size: 16, tock_limit: 32

Creating 1 receiver(s).

Actor 1: SEND

Actor 2: PASS

Actor 3: RECEIVE

Run 1 of 1024.

(0.00, 0, 1)

(0.01, 0, 1)

...

(0.05, 1, 2)

(0.013, 1, 2)

Run 2 of 1024.

(0.00, 0, 1)

(0.01, 0, 1)

...

(1.-1-1, 1, 2) <-- Dummy message

(0.04, 1, 2)

(0.015, 1, 2)

...

Figure 6.7: Sample output format from simulation engine with dummy mes-
sage highlighted.
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6.6.1 Language choices

The bulk of processing for experiments takes place in the simulation engine.
For reasons of speed and efficiency, as well as convenient object-orientation,
the engine is entirely written in Standard C++ with use of the Standard
Template Library. Random-number generation algorithms are taken from
the GNU Scientific Library (GNU, 2007).

For processing and analysis, the majority of the work consists of search-
ing through and tallying raw events generated by the simulation engine. A
language with strong support for text processing and regular expressions
is preferable for ease of development and adaptation. The Ruby language
(Thomas et al., 2004) is a convenient balance of object orientation, rapid
development and acceptable speed.

A combination of perl scripts and simple shell scripting were used to
orchestrate experiments and corresponding results processing.

6.6.2 Environment

The environment object is central to the simulator, acting both as a scheduler
for the components of the system and as the basis for communication between
the actors.

At program initialisation, each actor defined in the input file is created
and registered with the environment. The registration process assigns each
new actor a unique identifier and stores this, along with the actor’s role, in
the environment.

There are three roles within the environment: SEND, PASS, and RECEIVE,
respectively corresponding to the Sender , Node and Receiver actors types
shown in Figure 6.5. These roles define the flow of messages possible between
actors: SEND actors may send messages to any PASS actor, but may not
communicate directly with RECEIVE actors or themselves receive messages.
PASS actors receive messages and send them either to each other or to an
appropriate RECEIVE actor. RECEIVE actors perform no sending actions at
all.

Register of Actors

The environment acts as a centralised register of actors. This is used by
actors in generating messages and as a central means of communication to
allow actors to pass messages between themselves.

To create a new message, an actor requests from the environment the
identifier of appropriate actors to populate the path and recipient sections of
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the message. To directly contact another actor in order to pass a message,
the environment supplies the sending actor with a pointer to the desired
actor.

In each experiment, when all specified actors have been registered, the
environment announces to each actor in turn that the environment is ready
and that the simulation is due to start. Actors then perform any prelimi-
nary operations required before the start of the simulation run, such as the
generation by a sender of its queue of messages.

Scheduling

The environment also functions as a scheduler for parallel actor processes
in the simulation. Each actor implements a step() function that defines
the actions that the actor performs in a given epoch; the environment’s
main processing loop during a simulation is to select a random actor and
call its step() function. This may result in the sending of a message, the
incrementing of internal timing variables or no action at all, depending on
the internal state of the actor.

Scheduling in the simulator is random, but with restrictions to prevent
undesirable statistical effects of the simple model: each actor is guaranteed to
perform its step function exactly once per epoch, but the ordering of such calls
is randomised. This approach to scheduling is taken both for simplicity and
as an approximation to asynchronous networks with small possible delays.

A pseudocode description of the behaviour of the environment is given in
Algorithm 1.

6.6.3 Sender

Sending actors generate messages that travel across the network to receiving
actors. It is the events caused by the passage of these messages that are
analysed for the purposes of determining the entropy introduced by the sys-
tem. As a sender does not forward messages for other nodes, its behaviour
is relatively simple.

Each sender is defined with a number of messages to send and a given
number of hops for each message. At the initial run of an experiment, the
actor generates messages according to these two parameters. Messages are
created with a fixed path that consists of a sequence of one or more inter-
mediary node identifiers, and a recipient identifier. These parameters are
randomly assigned from the list of suitable actors retrieved from the envi-
ronment. Messages store the identifier of the sender that created them, as
well as an identifier unique to that message amongst those generated by that
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Algorithm 1 Main environment actions

{Register actors.}
id ← 0
active senders ← 0
for all actor in unregistered actors do

assign id to actor
push (id , actor .Role) to actor register
if actor .Role = SEND then

active senders ← active senders + 1
end if
call actor .Register
id ← id + 1

end for

{Initialise system.}
for all actor in registered actors do

call actor .Initialise
end for
sent messages ← 0

{Main simulation loop}
while active senders > 0 and sent messages > 0 do

actor ← {random actor from actor register}
actor .Step

end while
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sender. The combination of sender identifier and message identifier is used
in the analysis of results to uniquely identify messages.

After message creation, the sending actor’s sole behaviour is to send a
single message each time that its step() function is called. This injects the
message into the network and registers with the environment that a message
with the given identifier has been sent. When the sender has emptied its
queue of messages it de-registers with the environment and takes no further
part in the simulation.

The queue of sent messages is retained by the sender between multiple
runs of each experiments. Senders therefore reproduce the same sequence of
messages for each simulation run of a given experiment.

A description of the individual sender’s flow of execution is given in Al-
gorithm 2.

Algorithm 2 Sender behaviour

procedure Initialise(message count)
for i ← 1,message count do

message ← GenerateMessage
Push message to internal queue

end for
end procedure

procedure Step
if messages remain in queue then

pop first message from queue and Send
increment environment sent messages count

else
de-register with the environment

end if
end procedure

In practise, a variation on the simple sender is used to ensure that the
entire input sequence is reproducible. This implementation of the sender cre-
ates messages with differing sender identifiers, as well as registering with the
environment as multiple actors. This behaviour mimics multiple individual
senders, allowing the sequence of input for the entire network to be preserved
between simulation runs.

The send() function is simple, and is given in pseudocode form in Algo-
rithm 4.

Each message contains a sequence of actor identifiers that represent the
path to be taken through the network. At each hop, the head of this sequence
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Algorithm 3 Message generation

procedure GenerateMessage(path length,message id)
for i ← 1, path length do

actor ← {get random PASS actor id from Environment}
Push actor onto path

end for
actor ← {get random RECEIVE actor id from Environment}
Push actor onto path
Return (message id , path)

end procedure

Algorithm 4 Send method

procedure Send(message, recipient id)
receive actor ← {get reference to actor recipient id from Environ-

ment}
call receive actor .Receive(message)

end procedure

is removed and resulting message is forwarded to the next actor identified
in the sequence. Sending of a message is achieved by requesting a pointer
to the named actor from the environment. This pointer is used to call the
receiving actor’s public receive() function. If allowed, this function copies
the passed message to the called actor’s internal queue for consideration in
the next epoch of the simulation run. If the receiving actor is not in a suitable
state to accept the message, it may decline to copy the message and notify
the sending actor of this fact.

6.6.4 Receiver

A receiving actor’s behaviour is the simplest of any actor in the simulator.
The actor performs no actions as part of its step() function, and can neither
generate nor pass messages. The sole purpose of a receiver is to act as a sink
for messages.

Execution of the simulator continues until all genuine messages created
by the sending actors have passed through the network. A receiver therefore
de-registers each message that it receives from the environment. Upon the
environment detecting that all messages have been received, it ceases to call
actors’ step() functions and ends the simulation.

A pseudocode description of the receiver’s flow of execution is given in
Algorithm 5.
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Algorithm 5 Receiver behaviour

procedure Receive(message)
if message is non-dummy traffic then

decrease environment sent message count
end if

end procedure

6.6.5 Nodes

We discuss here the implementation details of nodes that implement the
various strategies for introducing randomness into the output sequence of
messages as described in the model.

Mix

The implementation of the Mix strategy applied in the simulator is the sim-
plest form of threshold mix, with a simple timing criterion added to prevent
messages from remaining in the node indefinitely once the flow of input mes-
sages has stopped. A basic threshold mix stores messages until a certain
number accumulate in its buffer, whereupon all messages are flushed from
the buffer in random order.

One problem with a pure threshold mix arises from the fact that no flush-
ing action is possible until the threshold value is reached. Our simulations, in
which a fixed number of messages enter the system, would result in messages
indefinitely remaining in mixes for which the threshold value can never be
reached. To counteract this effect we impose a timing condition that causes
these nodes to flush after a given period of inactivity. A description of this
node’s behaviour is given in Algorithm 6.

On receiving dummy traffic the Mix node does not immediately drop the
incoming message, as is the case for the other node types. To do so would
trivially reveal certain messages as being dummy traffic. We do not directly
apply such deductions in our analysis, however removing such trivial attacks
serves to make the simulation more representative of the real-world systems
in which we are interested.

To handle dummy traffic, the implementation of the Mix node therefore
generates a new dummy message for each incoming dummy message. The
original message is discarded and the newly generated messages is added to
the tail of the internal queue. This behaviour is only required in those exper-
iments where we combine Mix with Flood nodes. The GenerateDummy
procedure referenced in Algorithm 6 is described under the Flood strategy
in Section 6.6.5.
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Algorithm 6 Mix (Threshold) implementation

procedure Initialise
tock count ← 0
flushing ← false
pool ← 〈〉
pre buffer ← 〈〉

end procedure

procedure Step
if flushing = true then

if pool is non-empty then
message ← {pop random message from pool}
Send(message)

end if
if pool is empty then

flushing ← false
Move up to threshold pre buffer elements to pool

end if
else

tock count ← tock count + 1
if tock count > tock limit then

tock count ← 0
flushing ← true

end if
end if

end procedure

procedure Receive(message)
tock count ← 0
if message is dummy traffic then

message ← GenerateDummy
end if
if buffer size < threshold and flushing = false then

add message to pool
else

add message to pre buffer
end if
if pool size > threshold then

flushing ← true
end if

end procedure
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Flood

The Flood node performs no explicit mixing operation, and instead injects
extra messages into the stream of messages passing through the node. The
level of message injection is defined by a parameter that specifies the proba-
bility of injecting a dummy message rather than passing a valid message. As
this parameter increases, more and more dummy messages are injected into
the stream.

A Flood node stores each message that it receives in its internal buffer,
implemented as a simple first-in first-out queue. When the actor’s step()

function is called the node determines, according to the injection probability,
whether to send the genuine message at the head of the queue, or whether to
pass a dummy message in its place. If a dummy message is sent, the genuine
message remains at the head of the queue.

In the case that the Flood node’s internal buffer is empty, a dummy
message is always generated.

A description of the flood node’s flow of execution is given in Algorithm
7.

Algorithm 7 Flood Node implementation

procedure Step
if buffer is empty then

generate and send dummy message
else

random ← {random percentage value}
if random < flooding percentage then

message ← GenerateDummy Send message
else

pop message from buffer and Send
end if

end if
end procedure

Dummy messages are intentionally as simple as possible. Each message
travels only a single hop, and does not contain any unique identifying in-
formation. Dummy messages are also never considered as part of the set of
consecutive input pairs examined in analysing these experiments. As such,
dummy messages do not require individual identification.

The path of a dummy message is generated by requesting a random actor
of the appropriate type from the environment, typically an intermediary node
or a recipient, and creating a message with that actor as the sole element
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of the message path. Handling of dummy messages is dependent upon the
receiving node, but typically results in the message being silently dropped.

Generation of dummy messages is described in Algorithm 8

Algorithm 8 Message generation

procedure GenerateDummy
actor ← {get random PASS or RECEIVE actor id from Environ-

ment}
Push actor onto path
Return (dummy id , path)

end procedure

Hide

The implementation of the Hide strategy is requires a different approach
from that of the other node types. In a Hide system, individual nodes do
not explicitly perform actions that can be said to introduce randomness.
Instead, the confusion of an observer viewing the system is gained through
the existence of hidden system elements. The nodes of the network for this
strategy may be simple buffers, as in our experiments.

In order for the input sequence to be reproducible across multiple simula-
tion runs, systems built around other strategies make use of a MultipleSender .
This actor stores a fixed message queue for a number of individual senders,
causing the sequence of input messages to be consistent across multiple runs
of the experiment. For the Hide experiments, the existence of “unseen”
senders is modelled by an increasing number of individual Sender actors in
addition to the standard MultipleSender . The messages generated by these
senders are ignored in the result processing script when considering inputs.
This unseen behaviour achieves our goal of affecting the system’s output
ordering.

Drop

The behaviour of a Drop node can be considered the opposite to that of a
Flood node. Rather than injecting fake messages, the Drop node removes
genuine ones. When multiple messages exist in the node at the same time, it
therefore becomes impossible to tell which messages have been dropped and
which forwarded.

The Drop strategy clearly introduces severe reliability issues into the
network. However, the properties of this node type are of interest for the
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sake of complete coverage of possible strategies. Examination of this strategy
also has implications for systems that attempt to provide anonymity over
unreliable networks.

Similarly to the Flood node, the Drop node makes a probabilistic choice
regarding the action to take for a given message. In the case of the Drop
node, the random choice determines whether or not to drop a message from
the queue. A pseudocode version of this behaviour is shown in Algorithm 9.

Algorithm 9 Drop Node implementation

procedure Step
if buffer is non-empty then

message ← pop message from buffer
random ← {random percentage value}
if random < dropping percentage then

delete message
decrease environment sent message count

else
send message

end if
end if

end procedure

Crowds

The Crowds node, as described by Reiter and Rubin (1998), and discussed
in detail in Chapter 3.4.3, is a practical variant of the Drop strategy. This
strategy differs significantly from the other node types in that it has no fixed
message path length and cannot function effectively as a single node.

On entering a Crowds node, as with other node types, each message is
added to an internal queue. When considered for delivery, a random choice is
made concerning whether to deliver the message immediately to its ultimate
recipient or to forward the message to another randomly chosen node in the
system.

At the single node level, if we assume that a node may not forward mes-
sages to itself, the behaviour of this system is equivalent to that of a simple
buffer: the sequence of the output messages preserves that of the input.
When considered as a network of nodes, however, the system produces a
significant mixing effect. The behaviour of such a system is of interest both
as a practical implementation of the Drop strategy, and as an example of a
system that has been both implemented and deployed.
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A pseudocode description of the Crowds node’s behaviour is given in
Algorithm 10.

Algorithm 10 Crowds Node implementation

procedure Step
if buffer is non-empty then

message ← pop message from buffer
random ← {random percentage value}
if random < delivery percentage then

deliver message to ultimate recipient
else

send message to random other node
end if

end if
end procedure

6.7 Processing of Results

The processor scripts convert the results of the simulator into a form suit-
able for analysis. This largely consists of correlating the location of pairs of
messages in the input stream with their corresponding location in the output
stream.

Due to the size of the message sequences passing through systems, there
are a large number of possible output sequences for systems that aim to
confuse an attacker. Exhaustively exploring such a set of sequences is neither
feasible nor particularly desirable. An attacker is unlikely to attempt to
correlate each input message with an output message, and will typically be
more concerned with identifying a given target message.

In analysing our simulations, we therefore choose to examine the effect
that a system has on the distance in the output sequence between pairs
of messages from the input sequence. By selecting multiple message pair-
ings and calculating the distribution of their distance from each other in
the output sequence, we gain an approximate but computationally efficient
quantification of the level of reordering caused by the system.

The specific choice of which messages to examine, and details of how
the results are to be analysed, are discussed in greater detail below. A full
discussion of this is given in Chapter 5.
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6.7.1 Choice of pairings

It is not feasible to consider all possible pairs in the sequence of inputs;
the computational requirements to perform such an analysis would further
restrict the range of possible simulations to extremely small systems with
very few messages. We therefore require a choice of message pairings that
demonstrate the level of randomness in the system without requiring an
explicit calculation for each possibility.

We choose to examine the output distance between pairs of messages that
are consecutive in the input stream. This provides a useful representation of
the specific action of the anonymity system in introducing multiple output
orderings of the input sequence, whilst keeping the number of possibilities
to be examined relatively low. A number of other approaches, such as ran-
dom pairings and representative spreads of messages, have been explored
in preliminary experiments and rejected. The details of these preliminary
experiments are discussed in Chapter 5.2.3.

6.7.2 Basic Operation

The output of the simulator consists of a set of simulation runs, in which each
run is a time-ordered sequence of events analogous to a CSP trace. Each run
consists of the same sequence of input events, defined as all those that pass
between actors fulfilling the SEND role, and actors fulfilling the PASS role.

The sequence of input events is fixed across simulations runs, except in
the case of the Hide experiments that use hidden senders to disturb the
input sequence. In these experiments, messages originating from the hidden
senders are ignored when selecting consecutive pairs in the input sequence.

To process the results, the processor first creates a list of all input events
by examining the first run of the simulation. For each consecutive pair in this
list the processing code locates the corresponding pair of output events for
each run of the simulation. The location of messages in the output sequence,
along with the distance between the two, is used to form a probability distri-
bution over all output orderings for each pair in the input. This distribution
is used for the later entropy calculations.

The example in Figure 6.8 demonstrates a sample result from an iteration
of Algorithm 11 for a simple set of output messages. The current consecutive
pair is highlighted:



112 CHAPTER 6. SIMULATION

Algorithm 11 Execution flow of the results processor

for all consecutive (i , j ) in input do
for all run in result file do

i ′, j ′ ← location of i , j in output
distance ← i ′ − j ′

Store i ′, j ′ and distance
end for

end for

Input i j Output i ′ j ′ Distance
〈a,b, c, d〉 2 3 〈c,b, a, d〉 2 1 -1

〈d , c,b, a〉 3 2 -1
〈c, d , a,b〉 4 1 -3
〈b, d , c, a〉 1 3 2

Figure 6.8: Example of input and output sequences for a simple simulation
run. Target messages are highlighted.

6.7.3 Specific considerations for the Drop strategy

For each of the strategies Mix, Flood and Hide it is guaranteed that each
input message will be present in the output. Analysis of the simulation
results relies on this fact to calculate the respective distances between input
pairing distance and output pairing distance for each consecutive pair.

In the case of the Drop strategy, however, the property that each input
message appears in the output no longer holds. This presents the issue of
how to account for messages that are removed from the system.

The purpose of the processing stage is to render the results of the simu-
lator useful for the calculation of output entropy. This, in turn, is to provide
a measurement of the uncertainty of an observer concerning the possible
location of a message in the output stream.

With this consideration, the most useful approach is to tally the cases in
which one or both target messages are dropped from the output sequence.
We take the approach of recording separate results for the case of the first,
second or both messages being dropped. An example of this is given in Figure
6.9.

A consequence of this approach is that many results produce the same
output. Regardless of the position of the remaining message, the dropping
of one message from a pair causes the result to be recorded either as First
or Second. As we see in Chapter 7, this causes the entropy of the out-
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Input i j Output i ′ j ′ Distance
〈a,b, c, d〉 2 3 〈c,b, a, d〉 2 1 -1

〈d , a〉 - - Both
〈d , a,b〉 4 - Second
〈b, a, d〉 1 - Second
〈a, c, d〉 - 3 First
〈b, d , c, a〉 1 3 2

Figure 6.9: Example of input and output sequences for a simulation run with
dropped messages. Target messages are highlighted.

put distribution for a Drop node to be significantly smaller than for other
strategies.

6.8 Experimental Setup

The simulation experiments explore each of the four node types detailed
in Chapter 4. For each node type, there exists a characteristic parameter
that defines the extent to which that strategy is applied to the sequence of
messages. These parameters correspond to the threshold in Mix nodes, the
ratio of dummy messages to real messages in Flood nodes, the number of
hidden senders in a Hide system, and the percentage of dropped messages
in a Drop system. In our consideration of a Crowds-style node (Reiter and
Rubin, 1998), the characteristic parameter is the probability of a message
being immediately delivered rather than sent to another intermediary node.

Experiments are carried out for a variety of factors that affect the an-
onymity of the system. We examine each node type as its characteristic
parameter varies; nodes are simulated both individually and as part of a
four-node system. In four-node systems, the path length of messages is var-
ied so that results are obtained for messages travelling over path lengths of
one to four hops.

In each case we consider 64 messages passing from eight sending actors
to a single recipient. As we consider only unorderings on messages, and not
on sender identity, this is may be considered as equivalent to a single sender
whilst allowing for analysis based on sender identity if required.

Each simulation is performed 1024 times with the same initial queue of
messages travelling over a pre-generated path, resulting in a sample of the
possible output sequences. This process is repeated three times, for different
randomly generated input queues, in order to observe difference in behaviour
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Strategy Parameter Value Nodes – Hops
Mix Threshold 16 → 1 1 node – 1 hop

4 node – 1 → 4 hops
Flood Flooding Ratio 90% → 10% 1 node – 1 hop

4 node – 1 → 4 hops
Hide Hidden Senders 8 → 1 1 node – 1 hop

4 node – 1 → 4 hops
Drop Drop Percentage 90% → 10% 1 node – 1 hop

4 node – 1 → 4 hops
Crowds Delivery Percentage 90% → 10% 4 node – variable hop

Figure 6.10: Single-strategy experimental parameters

Strategy Parameter Value Nodes – Hops
Mix/ Flood Mix:Flood Ratio

Mix Threshold: 16
Flood Ratio: 90%

0:4 → 4:0 4 node – 4 hop

Crowds / Flood Crowds:Flood Ratio
Crowds Delivery: 50%
Flood Ratio: 90%

0:4 → 4:0 4 node – 4 hop

Crowds / Mix Crowds:Mix Ratio
Crowds Delivery: 50%
Mix Threshold: 16

0:4 → 4:0 4 node – 4 hop

Figure 6.11: Combined-strategy experimental parameters

caused by random variation of message paths.
The experiments that we perform, and their varying parameters, are de-

tailed in Figures 6.10 and 6.11. Figure 6.10 describes experiments that apply
to single anonymity strategies. Experiments that combined more than one
approach to anonymity in a single system are shown in Figure 6.11.

6.9 Summary

In this chapter we justify our simulation-based approach to analysing the sys-
tems described in the model of Chapter 4. We have detailed the motivation
behind the development of the simulator, and the purpose of the analyses
that we perform. The design of the simulator is shown, and its approach to
implementing the concepts expressed in the model is demonstrated.
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Using the simulator developed in this chapter, the simulation experiments
allow the anonymity provided by anonymity strategy to be quantified. We
explore this over a range of experiments that cover the fundamental anon-
ymity strategies both individually and as part of networks that consist of
multiple nodes with varying strategies. The results of these experiments and
their analysis are shown in the following chapter.



116 CHAPTER 6. SIMULATION



Chapter 7

Analysis of Simulation Results

7.1 Introduction

For the purpose of investigating the level of randomness produced by a va-
riety of communicating systems, we have constructed a simulation engine
that demonstrates the raw behaviour of messages passing over archetypal
implementations of each class of anonymity system as discussed in Chapter
4.

The processing of this raw data results in two sets of data from each
experiment. The first of these is a histogram showing the distribution of out-
put distances for consecutive input pairs; each variation in the experiment’s
parameter provides a different histogram. The second set of results shows,
for an experiment, the entropy of the output distances as the experimental
parameter varies. This allows the effectiveness of changing that particular
parameter to be seen.

64 messages are sent through each system from the main sending actor.
The Flood and Drop nodes clearly cause the number of output messages to
alter. The design of the Hide experiments also mean that a larger number
of messages are received due to the action of the hidden senders. In each
case, however, the set of input pairings is considered to be those drawn from
the 64 original messages.

For each experiment the defining parameter of each system is varied over
an appropriate range. The range that we explore for the various systems are,
briefly:

• Mix: the threshold size varies from 16 messages to 1 message.

• Flood: the percentage of dummy messages to real messages varies
from 90 percent to 10 percent.

117
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• Hide: the number of hidden senders varies from 1 hidden sender to 8
hidden senders. Each hidden sender sends 8 messages in total.

• Drop: the percentage of dropped messages varies from 90 percent to
10 percent.

For each of these systems a number of system setups are examined. These
are consistent across each experiment and are designed to investigate the
interaction of the anonymity method with the base level of randomness in-
troduced by the network itself.

Each experiment is first carried out for a single node interacting with the
sender and recipient. In this experiment each message may only travel a
single hop. The network is then expanded to consist of four fully-connected
nodes. In this system, the effects of messages travelling over 1, 2, 3 and 4
hops is simulated.

7.2 Control Experiments

The simulations investigate the randomness in the output sequence of mes-
sages for various combinations of nodes. We are interested in the level of
randomness introduced by each specific node type. The network of com-
municating asynchronous nodes itself, as implemented in the simulator, also
perturbs the sequence of messages due to the randomness of the system. In
order to have some comparison of the effect of the node types, it is necessary
to have an idea of how much randomness is added without their effects.

As a control experiment, we simulate a sequence of messages passing
through simple buffer nodes. These buffers perform no action beyond for-
warding messages that they receive; the intention is that they represent the
simplest form of network traffic.

To investigate the effects that the use of multiple buffer nodes have on
the sequence of input we individually examine systems comprised of one to
four nodes, with messages travelling from one to four hops.

As expected in the case of a single node with a single hop, there is no
confusion of the input sequence. This is the archetypal non-anonymous sys-
tem. There are no possible permutations of the sequence of output messages,
and consequently zero conditional entropy in the output distribution given
the input distribution.

As the number of nodes in the system increases, however, a level of ran-
domness is introduced into the output sequence due to the asynchronous
interaction of the nodes running in parallel. Far from being a minor effect,
passing messages through even a small number of asynchronous buffer nodes
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introduces a level of randomness into the output sequence that is comparable
to the specific mechanisms employed by the nodes themselves.

Figure 7.1 demonstrates the effect of passing 64 messages through net-
works made up from one to four buffer nodes. In each case, the route for
each message is randomly generated when the system is initialised. In each
experimental setup 30 initial starting conditions were tested, and for each set
of initial conditions the simulation was repeated 1024 times. The aim of this
approach is to eliminate any dependence in the results on particular input
conditions. The error-bars on each graph represent the standard deviation
of observed values, whilst the value of the bar itself is the mean.

Pairs of messages that enter the system in a particular order are more
likely to retain that order than to reverse their positions, although the dis-
tance between the two may change. As might be expected, therefore, there is
a bias to the positive side of the distribution. This is reflected in the output
spread in each graph.

7.2.1 Multiple Hops

Increasing the path length of a message to include a greater number of hops
increases the level of confusion in the output ordering. Figure 7.2 shows the
spread of messages for networks of two to four buffer nodes, with messages
travelling over two hops in each. Recall that in most experiments, barring
the crowds nodes that we examine later, we prohibit messages from including
a single node twice in their path.

Figure 7.2 demonstrates that increasing the number of hops results in a
notable increase in the spread of the output messages. Focusing solely on this
parameter, the resulting spread of messages in a four-node buffer network as
the number of hops is increased from one to four is shown in Figure 7.3.

It can be clearly seen that the frequency graphs for these control exper-
iments become increasingly perturbed as we increase the number of hops
and nodes. The computational limits on running the simulation experiments
have not allowed for the much greater sample sizes that would be required to
smooth these results, and as such we are forced to accept a level of statistical
noise in individual features of the graphs.

Applying the Kolmogorov-Smirnov test to two halves of a simulation run
fails to reject the null hypothesis that they are drawn from the same distribu-
tion at the 99% significance level; we may therefore consider each individual
simulation run to providing a representative view of the behaviour of the
system according to some fixed set of messages. However, comparing two
runs of the same experimental setup with differing message queues causes
the null hypothesis to be rejected at the 99% confidence level. This implies
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Figure 7.1: Distribution of spread in output for simple buffers. Number of
buffers ranges from a single buffer (top) to four buffers (bottom).
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Figure 7.2: Spread in output sequence caused by buffers with multiple hops.
Number of buffers in the network ranges from 2 (top) to 4 (bottom).
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Figure 7.3: Frequency of spread in output sequence caused by a four-buffer
network. Number of hops per message ranges from 1 hop (top) to 4 hops
(bottom).
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that varying the paths of messages travelling through the system does have
a statistically significant effect on the overall distribution that has not been
smoothed out by the number of simulation runs available to us. These re-
sults of the statistical tests cause us to consider the results for single node
networks with a greater level of confidence as to the observed trends.

7.2.2 Entropy of output pairings

The control experiments show us the base level of confusion introduced into
the output sequence by the nature of a simple communicating network. An
attacker able to observe all network traffic will clearly be able to trace a
message through such simple systems by observing the input and output
sequences for each individual node rather than for the combination of all
nodes in the system. However, restricting that view to the input and output
sequences of the system as a whole demonstrates a level of randomness that
is considerable even for small systems.

Although the graphs showing the spread of output distances between con-
secutive input pairs provide an overview of the systems’ behaviour, they do
not immediately provide us with a useful quantification of the randomness in
the system. We therefore calculate the entropy of the observed distributions.

The entropy provides us with how many bits of information would be
required to describe the output distance distribution, given that we know
the input sequence. An ideal system maximises this entropy, and thus the
confusion in the output ordering. As we consider 64 input messages, our
systems contain the possibility of messages being up to 63 messages apart1,
there are 126 possible output distances. The maximum level of entropy that
could possibly be observed is therefore that required to describe a uniform
distribution over 126 values. The entropy of such a system can be calculated,
according to Equation 5.1 to be slightly less than 7 bits.

Figure 7.4 shows an average change in entropy of the output distribution
as the number of nodes in the network increase. For the single-buffer case
there is clearly no confusion introduced by the system, however the entropy
notably increases as extra buffers are added to the system. While we do not
explore systems comprised of more than four nodes, we consider this entropy
graph as the basis for comparison as we examine the alternative node types.

Figure 7.5 shows the change in entropy for a four buffer system as the
message path is extended to include an increasing number of hops. In this
figure, the level of statistical error in the graph is clearly significant in com-

1This statement is untrue in the case that messages are injected or removed from the
system during a system run. This is discussed later.
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Figure 7.4: Entropy of the output distribution for single hop messages as the
network size increases from 1 to 4 buffers.
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Figure 7.5: Entropy of the output pairing distribution for a four buffer net-
work as the message paths increase from one to four hops.
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parison to observed difference in levels for different path lengths. While we
cannot gain much information from this graph, we can at least observe that
increasing the message path length through simple buffers does not signifi-
cantly increase the level of randomness beyond that already introduced by
the number of nodes.

We now investigate the increase in entropy provided by each of the specific
anonymity strategies.

7.3 Mix

The mix node is the most well-known, researched and popular form of an-
onymity strategy. There are many variations of the basic design, mainly
concerned with the details of the flushing strategy to be employed.

In simulation, we take the simplest form of mix: the threshold mix. This
system stores messages in an internal pool until a given threshold of messages
is reached, then forwards all stored messages in random order. For conve-
nience, we add a timing parameter to the mix that causes all messages to be
flushed when a sufficiently large time period has passed without a message
being received. This guarantees that all input messages are ultimately deliv-
ered, but that the timing parameter does not otherwise affect the behaviour
of the mix.

Over the course of 64 messages, we investigate the effects of varying the
threshold from 16 messages down to a single message. At the final stage, the
mix should behave identically to a simple buffer process.

An advantage of the mixing strategy is that for a given single node we
can achieve position swapping of messages; messages that enter the node
in a particular order can leave the node in the reverse order. At the level
of a single node, mixing is the only strategy that can achieve this. Due to
this property, we expect to see a relatively wide spread, both positive and
negative, in the output distance between pairs of messages.

For the case of a single node, we observe the spread of messages demon-
strated in Figure 7.6. The distribution of spread is largely symmetrical,
although clearly biased to the positive side of the distribution. This skew
represents the bias caused by messages pairs that fall into separate flushings
of the node not being mixed with each other. Such pairs of messages are
thus unable to reverse their position in the output sequence. As the thresh-
old become increasingly low, it becomes significant that a larger number of
consecutive pairs are separated by not occurring in the same round of mixing.
This bias becomes increasingly pronounced as the threshold approaches one.

For each change in threshold size the null hypothesis, that the two experi-
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Figure 7.6: Output distribution for a single Mix node as threshold value (t)
varies.
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Figure 7.7: Entropy change for a single Mix node as the threshold varies.

ments were drawn from the same distribution, is rejected by the Kolmogorov-
Smirnov test at a confidence level of 99%. In testing significance of the results,
two sample runs of each experiment were not be judged to be drawn from
different distributions at the same confidence level.

The level of entropy in the output distances of the simulation runs clearly
follows the size of the mix threshold, as can be seen in Figure 7.7.

(Full results of all experiments are shown in appendix A.)

The variation in output sequence entropy as the number of hops between
the mix nodes increases is shown in Figure 7.8. There is a noticeable increase
in entropy as the threshold increases, as would be expected. However it must
be noted that high levels of statistical error in the results of the simulation
apply here, as in the four buffer-node experiments.

The Mix clearly demonstrates a desirable level of randomness in the case
of a single node, and this continues as the number of nodes in the network
increase. When considered in the traditional Dolev-Yao framework discussed
in Section 2.6, where an attacker is aware of all traffic on the network, the
Mix node maintains a high level of confusion as to the location of messages
in the output.
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Figure 7.8: Entropy of Mix node networks as flushing threshold varies.

7.4 Flood

The introduction of dummy traffic into the stream of messages has been
proposed as a method to improve other anonymity systems. One of the
advantages of this approach is that, theoretically, it can prevent an attacker
from knowing that a genuine message has been sent at all — it breaks the
fundamental principle that one cannot hide the fact than an event occurred.

Our simulation does not address this aspect of the flooding strategy. We
concern ourselves only with the increase in entropy in the output sequence
as the ratio of flood messages to real messages increases.

We quantify the level of flooding in terms of the relative percentage of
flood messages to real messages. Starting from 10% flood messages, in which
one dummy message is sent for ever nine real messages, we examine the
change in entropy and spread as we approach 90% flood messages, in which
nine dummy messages are sent for each real message.

As the flooding strategy does not implicitly allow for pairs of messages to
swap their positions in the output sequence, instead injecting extra messages
into the stream, we expect to see a long-tailed right-skew to the possible
output distances that increases with the percentage of flood messages. The
spread of messages for a single flood node is show in Figure 7.9.

Examining the output entropies from the single Flood node, shown in
Figure 7.9, we observe a greatly increasing level of entropy in the output



7.4. FLOOD 129

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 90

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 80

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 70

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 60

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 50

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 40

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 30

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 20

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

Fr
eq

ue
nc

y 
(o

bs
er

va
tio

ns
)

Distance between output messages

f = 10

Figure 7.9: Output of single Flood node as percentage of flood messages
(f ) varies.
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Figure 7.10: Entropy change for a single Flood node as the flooding per-
centage varies.

distances. Although limited by the great level of bandwidth required, this
node type has no upper limit to the entropy in the output sequence. An
increase in the flooding percentage increases the number of messages in the
output sequence and thus increases the possible level of confusion.

In analysis of these tests we can again reject the null hypothesis at a
significance level of 99% for each change of the flooding ratio, showing that
varying the flooding parameter by 10% results in a statistically significant
difference in the distribution of the output results.

A difference between the Flood node and other nodes is that each
Flood node introduces messages into the system and thus causes an in-
crease in the size, and therefore the maximum possible entropy, of the out-
put sequence. Similarly, for each extra hop across which a message travels,
each node in the system will add another level of cover traffic. The addition
of a flood node into a system is therefore expected to strictly increase the
randomness of any system, as will an increase in the path length of messages.

Figure 7.11 demonstrates the output spread of messages from systems
made up from four Flood nodes as the message path increases. As can be
seen, the spread of possible output message distances becomes extreme even
at this low flooding percentage.

To better understand the level of entropy introduced into the output
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Figure 7.11: Output distribution for four Flood nodes as the number of
message hops (h) varies with flooding rate f = 20%.

sequence, Figure 7.12 shows the entropy of a four Flood node system as the
message path length increases from one to four hops. These show that the
increase in entropy over the basic buffer node system is significant, even for
the case of single hop messages. Even in the case of a single hop flood node,
a ratio of 30% flood messages to 70% genuine messages is sufficient to raise
the confusion in the output sequence above the level of a simple buffer with
messages travelling over four hops.

Despite the advantage of Flood nodes, the bandwidth required to sup-
port the strategy is very high. The advantages of the method are somewhat
unfairly highlighted by our analysis as we do not consider the level of traffic
that flooding produces. We do not analyse the levels of traffic required for
a full Flood network, although they are sufficiently high to have prevented
any implementations of a Flooding strategy from being deployed. Explo-
ration of this aspect of the Flood node would be a useful extension of the
work presented here.

7.5 Hide

In a Hide system, confusion is introduced into the relative orderings of the
input and output sequences through the action of unobserved senders. By re-
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Figure 7.12: Entropy of Flood nodes as flooding percentage varies.

stricting the observer to consider only a certain subset of the possible senders
we gain an effect similar to that of dummy traffic in its effect on the entropy
of the output.

To simulate this effect, we consider a number of hidden senders acting
alongside those that we maintain throughout the other experiments. These
hidden senders are interleaved with the standard sending actor, and so in-
troduce an element of randomness directly into the input sequence that is
not present in other experiments. Each hidden sender adds 8 messages into
the input sequence, that may be injected at any point. In considering the
view of an attacker observing the node, we consider that the attacker will be
unaware that the messages from hidden senders have been injected into the
system at all. The nodes themselves in these Hide experiments are simple
buffers.

When we consider consecutive pairs in the input, we do not perform any
analysis of those messages that are produced by the hidden senders.

As Figure 7.13 shows, the spread of output messages is not greatly in-
creased by the interaction of hidden senders. This is reflected by the variance
in entropy as the hidden senders increase. It is worth noting that the hidden
senders, as implemented in our simulation, is similar to a low level form of
message flooding. As such, we would expect the entropy of the system to
continue increasing indefinitely as the proportion of hidden senders increased.
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Figure 7.13: Spread of output messages for a single Hide node as number of
hidden senders (h) varies.
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Figure 7.14: Entropy change for a single-node Hide system as the number
of hidden senders varies.

Despite this, Figure 7.14 implies that the number of hidden senders required
to achieve a significant level of randomness is relatively high.

As the level of randomness is defined at the point of message entry into
the system, we do not expect a great increase in this entropy as the number
of nodes or hops increases. Figure 7.15 compares the entropy of a four node
system with an increasing number of hidden senders. There is an apparent
increase in the entropy of the system, despite a clear level of statistical noise
in the results; however the overall increase is in the range of single bit as the
number of hidden senders varies from 1 to 8.

The number of extra senders required to significantly introduce random-
ness into the output sequence is therefore relatively high. In practical consid-
eration, however, it may be expected that a real-world network will contain
a large number of senders that cannot be observed by an attacker. As a
specific method for introducing randomness the Hide strategy is not par-
ticularly efficient, but is a not insignificant advantage in systems where the
attacker model is restricted to a non-global view of the network.
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Figure 7.15: Overlaid entropies of four node Hide systems with increasing
numbers of hidden senders. The base entropy of a buffer network is shown
for comparison.

7.6 Drop

Pure Drop nodes are, almost certainly, the least useful basic form of anon-
ymity system. Here, the observer is confused as to the possible relationship
between input and output messages due to a given percentage of messages
being dropped as they travel across the network. One problem with this sys-
tem is clear: we lose the reliable message delivery that is desirable in most
communicating systems.

The parameter that we vary in the Drop node experiments the percent-
age of messages that are dropped by each node rather than being forwarded
to the next hop on their route. For the single node system, therefore, con-
secutive pairs of input messages can only exit the node consecutively. The
alternative is that one or both of messages never appear in the output se-
quence. This makes a graph demonstrating the spread of output messages
less appropriate than for our earlier systems. We will instead show only
the entropy for a single node system, representing the range of possibilities
including the chance that one of both messages are dropped in the output.

Figure 7.16 demonstrates that for a single node we cannot expect a high
level of entropy in the output sequence. The entropy of the system maximises
at a fifty percent probability of dropping a message. This represents the point
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Figure 7.16: Single Drop node with increasing probability of dropping a
message.

at which there is an equal chance of messages being classified as “dropped”
rather than being one space apart in the output sequence.

We may consider the Crowds-style node as a more useful exposition of an
anonymity strategy expressible via internal random choice.

7.7 Crowds

While a pure Drop node may be considered the archetype for nodes that
implement a strategy based on randomised internal choice, we consider that
the Crowds node is a more useful subject for analysis. The inherent im-
practicality of the Drop node is not carried over to the Crowds approach,
which has the added advantage of having been implemented as a real-world
anonymity system. As such, we show here a similar analysis of the Crowds
node to that conducted for the other node types.

The Crowds system is a realisation of random internal choice as a mech-
anism for introducing random reordering into a stream of messages. As this
approach chooses to route messages either to another node or to deliver to
the recipient the system intrinsically functions through the combination of
nodes and cannot be employed as a single node. Each node, on receiving
a message, probabilistically chooses whether to deliver that message to its
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Figure 7.17: Spread of output for four Crowds-style nodes as the percentage
probability of messages being delivered rather than forwarded (d) varies.

intended receiver, or to forward the message to another Crowds node. This
approach causes messages to travel around the system for an indeterminate
number of hops before being delivered to their ultimate recipient.

Due to the nature of the Crowds approach, we cannot vary our parameters
as for the other experiment types in this chapter. The number of nodes in the
system must be greater than one2, and the path length of a message varies
with the probability of a message being delivered. Figure 7.17 shows the
results of a four node system as the probability of a message being randomly
forwarded to a new node varies.

Although the system has four buffers, and so will inherently demonstrate
a level of mixing in the output, the spread of messages is altered significantly
from the corresponding simple buffer systems. As the probability of a mes-

2In fact, a Crowds-style approach could feasibly be applied a single node if one were
to allow the node to deliver to itself. In such a scenario, each message would either be
delivered to its intended recipient or returned to the end of the queue of messages when
considered for delivery.

Such an approach mimics certain proposed Mix strategies, such as the Stop-and-Go
Mix of Kesdogan et al. (1998) that delay messages individually rather than considering
them in batches. One could argue that such “Mixes” are better classified as a form of
single-node Drop strategy, and the abstract model of Chapter 4 would support this view.
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Figure 7.18: Entropy of four-node crowds-style network as delivery percent-
age varies.

sage being decreases, the number of messages remaining in the system at a
given time also increases. We can see, as the chance of delivery becomes very
low, that the system approaches a state where all messages that enter the
system are effectively mixed. In this situation, the Crowds network behaves
similarly to a Mix node with a threshold corresponding to the number of
messages in the system.

Figure 7.18 shows the level of entropy in the system as the likelihood of
delivering a messages rather than forwarding it varies.

7.8 Combined Systems

We have examined each of the fundamental anonymity node types. For each
anonymity strategy, we have examined the node in isolation and as part of
a small network comprised of multiple copies of that node. In this section
we briefly examine the effect that combining multiple node types in a single
system has on the level of randomness introduced into the output sequence.

The combinations that we have chosen each consist of two types of node.
Every combination of Mix nodes, Flood nodes and Crowds nodes are ex-
amined. We choose to ignore the Hide anonymity strategy, as it is more
easily conceived of as a restriction on the attacker’s capabilities than a node
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type in itself; as such, it does not reflect a genuine combination of node types.
The Drop node type is omitted due to its inherent impracticality, and we
instead consider the more realistic Crowds-style node.

For each experiment, we choose a suitable value for the fundamental
parameter of each node. The nodes are then combined in a system which
varies the ratio of the two node types to each other. The results are processed
as for the multiple node systems in the previous section.

7.9 Mix and Flood

In the combination of Mix and Flood nodes, a threshold of 16 messages
was selected for the mix along with a fifty percent flooding ratio for the
flooding nodes. These values were chosen as a useful representative level of
the anonymity properties of each node type. As we are interested largely in
the interaction between the nodes these systems, the message path length is
set to four hops in order that all nodes will be visited.

Figures 7.19 and 7.20 provide a view of the combination of Mix nodes
with Flood nodes. The level of entropy introduced into the output sequence
by the two node types in isolation is highlighted in Figure 7.20. One point
of interest concerning this graph is that the variation between combinations
of the differing node types does not cause any great change in the level of
entropy provided by the system. Note that entropies in Figure 7.20 range
over less than a single bit in total; however the combination of the two node
types results, in one case, in a higher level of entropy than that provided by
either homogeneous system. A Mix node combined with three Flood nodes
introduces a higher level of confusion into the output sequence than either
four Flood nodes or of four Mix nodes.

Whilst the increase in entropy resulting from this combination is small in
the example shown, it demonstrates that the combination of different types of
anonymity system can show an improved level of confusion than that caused
by a single approach.

7.10 Crowds and Flood

In combining a Crowds-style node with other node types there is the problem
of indeterminate message path lengths. For the basic node types defined in
the model, the number of hops taken by each message is a fixed number.
Further, the implementation of nodes in the simulator defines the full message
path on creation. In contrast to this, the Crowds approach implicitly relies
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Figure 7.19: Spread of output for networks of Flood and Mix nodes as the
number of each node type varies.
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Figure 7.20: Entropy of networks of Mix and Flood nodes.

on a path that is variable in both length and route.
The variability of message paths in a Crowds system causes some difficul-

ties in combining the nodes with other node types that rely on fixed message
paths. There are a number of possible solutions to this problem, which we
describe here.

7.10.1 Enforce hops

A possible approach in resolving the problem of variable message paths for
Crowds nodes is to define a fixed message path for each message as usual.
Different node types in the system would respect this a priori path to greater
or lesser extents. A Crowds node would respect the length of the path, but
not the routing information. On receiving a message a Crowds node would
decrement the remaining number of hops on the path; if this indicated that
the crowds node was the last hop on the route, the message would be delivered
directly; if the value indicated that more hops were required the message
would be forwarded to another random node, without respecting the route
defined in the message.

This scheme is a violation of the principle of the Crowds node. Each
message is no longer subject to being randomly dropped from the system,
only the route of each message gains a random element. For a system in
which messages already contain a randomly generated route, this is unlikely
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to prove any new or interesting behaviour. Considering an attacker who may
function as a node on the route there could be an added layer of confusion
in not storing routing information in each message, but this is both beyond
the scope of our simulation and unlikely to be of any great benefit. Such
a system would presumably already have a scheme in place to prevent a
message’s route from being known to all nodes on the path.

7.10.2 Isolate Crowds nodes

A second approach to combining Crowds nodes with other node types is to
consider the step of entering a Crowds node as a single hop, and each subse-
quent entry into a Crowds node as a “null” hop. In such a system, a message
would travel over its given number of hops. If the routing information re-
sults in the message entering a Crowds node during the path, the message will
travel randomly between nodes until that random choice results in the mes-
sage being forwarded to a non-Crowd node type. The message path would
then continue as normal. In the case that entering a Crowds node was the
last hop on the route, the message would be randomly forwarded between
nodes with the added possibility of immediate delivery to the recipient.

This scheme is quite attractive in enforcing a given number of hops be-
tween nodes in the system, treating the entire body of Crowds nodes as a
form of “super-node”. An argument against implementing approach is that
it again introduces an artificial element to the Crowds nodes by removing
the option of immediate delivery if the predefined route has not been fully
traversed. Further, the system adds a level of extra checks and special cases
of the message state. It would be preferable to maintain the behaviour of
individual nodes as closely to their “natural” state as possible.

7.10.3 No enforcement of path

The simplest approach, and the one that we have chosen to implement, is
to allow the Crowds nodes to entirely disregard the path encoded in the
message. On receiving a message a Crowds nodes will randomly forward
the message to any other node in the system, or deliver it to the intended
recipient. If the message is forwarded to another Crowds node, the process
repeats. If the message is forwarded to a non-Crowds node, that node will
respect the path encoded in the message and behave appropriately.

This preserves the most natural-seeming behaviour of each node type
without adding extra layers of complexity or imposing an idea of the “best”
behaviour of the system.
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7.10.4 Results

Applying the approach discussed in Section 7.10.3 to systems comprised of
varying numbers of Crowds and Flood nodes, we observe a spread of output
messages as shown in Figure 7.21. The delivery probability of the Crowds
nodes was set at fifty percent, and the Flood node was defined, as above,
to inject a fifty percent ratio of delivery traffic into the message stream.

There is a notable spike in the frequency of output messages appearing
within a small distance, likely caused by the possibility of a Crowds node
immediately delivering a message to its recipient. Despite this, the spread of
the graph is very widely distributed and approaching the desired symmetrical
distribution.

Figure 7.22 again demonstrates a higher entropy in the output sequence
of the combined system over that possible for either of its constituent node
types. In the combination of Flood and Crowds nodes, this behaviour is
particularly pronounced. In the most extreme case, that of a single Crowds
node combined with three Flood nodes, the entropy of the output sequence
is over one bit higher than that of the pure Crowds system. Exceeding the
entropy of the lesser Crowds system is less surprising, however, than the fact
that the system increases the entropy of the higher Flood node system by
over half a bit.

This combination of node types appears to be a highly successful approach
according to our criterion. This desirable behaviour would increase were we
to allow the Crowds nodes to process the dummy traffic from the Flood
nodes, that traffic being immediately dropped in the current implementation.

7.11 Crowds and Mix

Combining Crowds-style nodes with the more typical node types has been
discussed in Section 7.10. The arguments made there are equally applicable
to combining Crowds nodes with Flood or Mix nodes. We apply the same
approach to the combination of Crowds and Mix nodes. The probability
of delivery for Crowds nodes was set to fifty percent, and a threshold of 16
messages was selected for the Mix nodes.

Figure 7.23 again shows a symmetric distribution of output distance fre-
quencies that demonstrates a clear spike for consecutive input messages to
leave the system within a few messages of each other. This spike becomes
more pronounced as the number of Crowds nodes in the system increases.
Again, the spike seems to correspond to the chance of a messages entering
a Crowds node and being immediately delivered, thus removing any notable
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Figure 7.21: Spread of output for networks of Crowds and Flood nodes as
the number of each node type varies.
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Figure 7.22: Entropy of systems comprised of varying numbers of Crowds
and Flood nodes.

confusion in the output sequence. In other situations, however, the combi-
nation of a Crowds node with a number of Mix nodes appears to benefit the
behaviour of the system by increasing the uniformity of the output distances.

Of the combined systems that we have examined, the pairing of Mix
and Crowds nodes is notable in that any combination of the two node types
out-performs a homogeneous system of either type. The overall change in
entropy is small, ranging within half a bit, and is thus subject to some level
of doubt from potential experimental error. Despite this the system appears
to follow a trend suggested by the previous combinations, that the combining
two different forms of anonymity node in a single system can have benefits
for the amount of entropy introduced into the output sequence.

7.12 Summary

We have compared the level of randomness introduced into a sequence of
messages by a variety of systems. The systems examined have been repre-
sentative of the four basic anonymity strategies defined in Chapter 4, in each
case exploring the behaviour of the system as the characteristic parameter
of the strategy varies.

There are difficulties with directly comparing the level of entropy intro-
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Figure 7.23: Spread of messages in systems comprised of differing numbers
of Crowds and Mix nodes.
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Figure 7.24: Entropy of systems comprised of varying numbers of Crowds
and Mix nodes, compared against entropies of pure Mix and pure Crowds
systems.

duced into the output sequence by the different anonymity strategies, as their
characteristic parameters are not themselves comparable. The level of traffic
introduced by a Flood node cannot easily be compared against the delivery
probability of a Crowds node. Despite this, we have selected ranges of values
for each node that cover a realistic set of possible values within the context
of the simulations.

The Flood node, as might be expected, is capable of demonstrating a
higher level of entropy in the output sequence than any other node type.
The introduction of extra messages into the output stream removes the up-
per bound on the entropy that is enforced by a fixed number of messages.
This advantage is reduced, however, by the strategy’s high bandwidth re-
quirements.

The Mix node demonstrates a useful level of entropy even with relatively
small mixing thresholds, and results in a far more uniform distribution of
output probabilities than that demonstrated by the single Flood nodes.

Employing the Hide strategy causes a similar effect to that of a Flood
node, but is more restricted in its ability to randomise the message stream.
The effects of a Hide system would be more apparent in larger multi-node
systems in which several intermediate nodes, as well as sections of the out-
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put stream, could be hidden from view. Our approach to comparing and
measuring anonymity systems based on the entropy of the output sequence
is not the most suited to these systems.

The Drop strategy in its purest form has, as expected, proved to be
almost useless for the desired goals of an anonymity system. The unreliability
of message delivery and the small level of entropy that is introduced into
the output sequence renders this strategy by far the least desirable of the
basic forms. Despite this, a view of the conditional entropy of the system
that related input message distances greater than one to output message
distances could produce a different view of these systems, but this is unlikely
to produce any startling results.

As a representative of the Drop strategy, the Crowds node demonstrates
interesting behaviour. This system does not function as a single node, and
we can thus only compare it against equivalent multi-node systems of the
other strategies. In this context, a combination of Crowds nodes appear to
function effectively as a multi-node Mix. As the probability of a message be-
ing delivered becomes increasingly low, messages are more likely to leave the
system in a random order rather than that imposed by the ordering of the
input sequence. The comparison between a Mix strategy of sufficiently high
threshold and a series of Crowds node with sufficiently low delivery proba-
bility is striking; each approaches the ideal uniform distribution of output
probabilities constrained by the possible combinations of pairs in the system.

7.12.1 Multiple Nodes

Extending systems of single nodes to multiple node systems introduce a sur-
prisingly high level of entropy, even when the nodes are deterministic buffers
as demonstrated in Figure 7.1. This effect is pronounced even for the small
four-node systems that we consider. Perhaps due to the already high level of
entropy introduced by such multi-node systems, we do not observe a great
increase in output sequence entropy as the message path length is increased
from one to to four hops. It is possible that in larger systems that consider
a greater number of messages this effect would be more noticeable.

For each system comprised of multiple homogeneous nodes, the distribu-
tion of output sequences is “smoothed” to more closely represent the desired
symmetrical distribution. This effect is most notable, and beneficial, in sys-
tems such as that of Flood nodes, where the mixing effect of a multiple
node system allows message positions to become reversed.

The most interesting results from multiple node simulations have come
from combining multiple node types. In each combined system that was sim-
ulated, a higher level of entropy in the output sequence than that possible
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from equivalent systems of either node type was observed. While there are
several anonymity considerations beyond the level of mixing in a system of
multiple nodes, these results suggest that the combination of various node
types in a single system could be a viable approach towards building future
anonymity systems. When considered in light of other properties, such as
the amount of time and level of traffic that each node type requires, a com-
bination of different node types in a single system could be used to yield a
system able to meet a more flexible set of message delivery requirements.
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Chapter 8

Conclusions

8.1 Overview

This thesis is concerned with the definition of anonymity as a property of
communicating systems, the classification of systems that provide this prop-
erty and the analysis of the methods employed by these systems.

We define anonymity in communicating systems as an observer’s confu-
sion concerning the linkage between observed events. Using this definition,
we identify a number of fundamental strategies that introduce or enhance
this property. We then present a classification of anonymity systems based
on these strategies. Finally, we use simulations to analyse the effectiveness
of these methods according to an information theoretic quantification of the
anonymity that they provide.

8.2 Model

The fundamental requirement for anonymity in a communicating system is
the existence of uncertainty as to linkages between events. In our model
of communicating systems this uncertainty is brought about by enforcing
multiple possible explanations for the state of a system with respect to the
ownership of observed events.

For a system to meet our definition of anonymity, it must fulfil two re-
quirements:

• Data Independence: Messages entering and leaving some system
must be unlinkable by an observer that has access to the content of
messages.

153
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• Ordering Independence: The ordering of messages must not reveal
unique linkages between observed events.

The first of these properties is achieved through appropriate use of cryp-
tography, and we have chosen not to focus on this aspect of anonymity. The
second property, ordering independence, is the focus of the work presented
in this thesis.

To prevent a unique correlation between messages entering and leaving
a system based on the flow of traffic we assert that a system must allow
for multiple possible output sequences for a given sequence of input. Such
systems must therefore exhibit some randomness in their message forwarding
behaviour.

We demonstrate that existing systems for anonymising messages may be
represented as one or more fundamental mechanisms that introduce ran-
domness in communicating systems. This realisation allows us to classify
anonymity systems according to the strategy that they employ to introduce
randomness into the flow of messages.

Treating the various anonymity strategies as separate operators allows us
to examine in isolation approaches that are typically viewed only as ways to
improve the anonymity of other systems.

8.3 Methods of Providing Anonymity

We explore four strategies for providing anonymity representative of funda-
mental mechanism for resistance to traffic analysis:

• Flood: The introduction of dummy messages into a system’s traffic.

• Mix: The storage and random reordering of batches of messages.

• Hide: The obscuring of some portion of a system.

• Drop: The dropping of messages from the flow of traffic.

The most widely studied strategy is the Mix. Other fundamental ap-
proaches to providing anonymity are typically overlaid onto a Mix-based
system in order to improve its anonymity or to overcome attacks against the
system.

The Flood system provides a form of anonymity that cannot be matched
by the other strategies. In most systems, observing an event informs the ob-
server that a message has been sent. The Flood system, by introducing
events that do not relate to “genuine” messages, prevents an attacker from
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making this deduction. This behaviour in the absence of genuine input mes-
sages allows the Flood node to meet the strongest form of the ordering
independence property; such a system may be considered anonymous for any
sequence of input.

The Drop system, in its basic form, is of little practical use due to its lack
of reliable delivery. For the purpose of analysis, we therefore also consider a
variant on the strategy that does not delete messages, but instead delivers
them immediately to their destination rather than forwarding them to other
intermediary nodes. This models the Crowds system of Reiter and Rubin
(1998).

Having defined the basic forms of anonymity system, we analyse their
effectiveness both individually and in combination.

8.4 Simulation

In order to quantify the effectiveness of the strategies described in our model,
we construct simulations of small networks that implement each strategy.
Our analysis is based on an information theoretic quantification of the level
of reordering in the sequence of messages. We consider consecutive pairs
of messages in the sequence of input and examine the distribution of their
distance from each other in the output stream over multiple runs of a system.

8.4.1 Individual Strategies

The simulations demonstrate the behaviour of the varying methods of achiev-
ing anonymity as we vary their defining parameters. Of these, the Flood
node is the most effective in increasing uncertainty. There is no upper limit
on the amount of entropy in a Flood system; adding dummy messages allows
the number of messages to endlessly increase and so increase the confusion
between message locations.

From both the theoretical and simulation results, the Flood node ap-
pears to be the ideal system if we consider only its ability to introduce
uncertainty into the ordering of the traffic flow. There are, however, high
bandwidth requirements for the Flood strategy that present significant im-
plementation difficulties in many cases.

In the case of the Mix, the entropy of the system increases until all
messages are handled in a single batch. At this point, initially consecutive
messages may appear at any point in the output sequence. Unlike other
approaches, the Mix strategy allows for pairs of messages to reverse their
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position in the output stream rather than simply altering the distance be-
tween them.

A pure Drop system is shown to be ineffective both in its ability to
introduce entropy into the output stream and in the number of messages that
are delivered. The Crowds approach is a practical alternative that maintains
reliable message delivery; unlike other methods, however, the Crowds system
cannot function effectively as a single node and must be employed as part of
a network. As we discuss later, the existence of multiple nodes introduces
an extra level of entropy into the message sequence due to the interaction of
the parallel processes.

The Hide system decreases the scope of an attacker’s observations to
increase that attacker’s uncertainty as to the sequence of output messages.
As a method for providing anonymity, the Hide system is difficult to imple-
ment. The approach relies on an attacker being unable to observe certain
aspects of the system, and thus leaves the system open to attack by stronger
observers. The Hide strategy is therefore more appropriately considered as
the assumption of a limited attacker than as an explicit method in its own
right.

8.4.2 Network Effects

Simulations show that even small networks introduce a notable level of un-
certainty into the sequence of messages. This behaviour could be classed as
a form of the Hide strategy as it relies on an observer who views only the in-
put and output streams of traffic and not links between nodes. Despite this,
the entropy increase caused by small numbers of nodes can be comparable
to that of single nodes employing a specific anonymity strategy.

8.4.3 Combination of Strategies

Combining nodes that make use of different strategies is shown, in some
cases, to improve the entropy of a system’s output distribution above that of
systems comprised entirely of a single node type. Each simulation combining
multiple anonymity strategies shows, for certain combinations, higher levels
of entropy than their homogeneous counterparts.

The use of multiple strategies in a system has the potential to introduce
avenues of attack for an observer due to varying message paths causing dif-
ferent behaviours for messages. However, such an approach could also result
in systems that meet more flexible requirements for message delivery whilst
simultaneously increasing the confusion of an attacker. The implications of
such an approach are a potential avenue for future study.
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8.5 Future Work

This thesis presents a definition of anonymity and a model for classifying an-
onymity systems. This model is then partially explored through simulation.
There are several areas of interest that would extend this work.

8.5.1 Formal Modelling

Our model of anonymity relies on the existence of randomness, and is inspired
by the introduction of nondeterminism in abstract CSP processes. The pres-
ence of nondeterminism is an indicator of anonymity in the system. While
this allows for the presence of anonymity in a system model to be tested via
a simple determinism check, it does not provide a useful quantification of the
anonymity properties of a system. As our approach focuses on simulation
we have gained a quantitative analysis of the randomness in the system. Ex-
tending and formalising our underlying models, however, to result in a more
provable analysis would be a useful development of our ideas.

A probabilistic extension to such a model could allow for a formal analy-
sis of the systems that we propose. Assuming an appropriate model checker,
such a model would allow systems to be checked for anonymity properties
with given probability. This would lend itself naturally to verifying the suf-
ficient anonymity requirements, incorporating cardinality and certainty, as
described in Chapter 2.

8.5.2 Data Independence

We have largely ignored the problem of data independence, assuming that
appropriate use of encryption prevents messages from being linked via their
content as they pass through the network. If attackers function as message-
passing nodes, however, the information revealed by a partial knowledge of
the route can be used to compromise the anonymity of users.

Combining the elements of data independence and content independence
would result in a more complete model for the verification or design of an-
onymity systems, but would require significant further development.

8.5.3 Attacker Models

The level of anonymity that a system can provide is strongly linked to the
capabilities of the attacker. Our simulations assume that the attacker views
the entire input and output sequences, except when we specifically reduce
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this capability for Hide-based systems. This approach entirely ignores links
between nodes in larger systems.

Extending the analysis to reflect an attacker’s imperfect knowledge would
provide a more useful analysis of the effectiveness of the various systems.
Such a view would also allow us to consider attackers concerned with mes-
sages that are merely passing between nodes, and not only those delivered
to receivers.

The simulation, being based on the model, also fails to consider corrupt
nodes in which the linkage between input and output events is known for
those nodes controlled by the attacker. As for the model, adding this con-
sideration would allow a more complete evaluation of anonymity properties.

8.5.4 Improved Quantification

The quantification employed by the simulation experiments is based on the
relative distance between pairs of messages that were consecutive in the input
sequence. This quantification provides a computationally feasible approxi-
mation to the level of uncertainty concerning the distribution of outputs for
a given input.

Our quantification is not effective at analysing the pure Drop strategy,
in which messages may be dropped from the output. This is not a great
concern, as the Drop strategy presents too many problems to be seriously
considered as the basis of future work. The lack of a satisfactory analysis for
this case, however, highlights a weakness of our method.

Quantifications of the effectiveness of anonymity systems, such as those
presented by Diaz et al. (2002), Serjantov and Danezis (2002) and Wright
et al. (2002) are typically based on a specific attack that applies to the system
being examined. The attack selected by Serjantov and Danezis (2002) is
examined in detail with respect to mixes, but is applicable to other types of
system. Wright et al. (2002) base their work on an attack that applies to a
variety of systems. Our quantification attempts to be entirely independent
of the system under consideration, but consequently is less representative of
specific attacks. Choosing an alternative focus for quantification, or exploring
attacks focused against each strategy, may result in more effective analyses.

Recent work by Kesdogan et al. (2006) is also aimed at identifying fun-
damental limits of the strength of anonymity systems regardless of specific
attacks, but focuses solely on mix-based systems. Extending this approach
to the full range of strategies that we propose in this thesis could provide a
useful alternative to the quantification that we employ.

A further consideration for the development of a quantifications is their
ability to be applied in real-world systems. The current quantification is
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appropriate for simulations in which the entire state of a given system is
known, but would be of less use as the knowledge of the system decreases.
A quantification that requires only a limited knowledge of the system would
be applicable beyond simulations in deployed systems.

8.5.5 Detailed Modelling

A direct extension to the work presented in the later chapters of this thesis
would be to extend our simulations to larger networks. The experiments
conducted in this work analyse relatively low numbers of messages passing
over networks consisting of up to four nodes. Extending the simulations
would allow for more detailed analyses of the behaviour of these systems.

The combination of multiple node types in a single system has produced
interesting results in small networks. Larger scale models would allow for a
greater number of combinations and their effects to be examined.

The simulation experiments, although at a lower level than the model,
remain an abstraction of real systems and do not consider factors such as
patterns of user traffic and bandwidth requirements. An important addition
would be to incorporate such factors into our simulations and thus more
closely approach a true implementation.

8.6 Summary

This thesis has presented a framework in which the properties of anonymity
systems can be expressed, and the systems themselves modelled. This model
has been used to classify anonymity systems according to the fundamental
strategy that allows them to provide anonymity to users. Each of these
strategies has been individually presented and related to real-world imple-
mentations. Importantly, we show that each strategy is individually capable
of providing some level of anonymity.

We have developed a simulation that allows for each anonymity strategy
to be implemented in a form suitable for statistical analysis. A quantifica-
tion of the level of anonymity based on information theoretic entropy of the
distribution of messages has been proposed and applied to the results of the
simulator.

The results of our quantification allow us to present a comparison of the
effectiveness of the varying fundamental anonymity systems. These systems
have been explored individually and in small networks, as well as in systems
comprising multiple anonymity strategies. We show that certain strategies
are clearly preferable to others with respect to the uncertainty that they
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introduce into the distribution of messages, and that combining strategies in
a single system can further increase the level of anonymity.

The work presented here demonstrates that there are fundamental fea-
tures shared by all anonymity systems, and that the various strategies for
achieving this may usefully be treated both individually and in combina-
tion. This view allows for a fuller understanding of existing approaches to
providing anonymity, and provides insight into the design of future systems.
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Appendix A

Results

A.1 Introduction

We present here full results of the simulation experiments, Each table shows
the entropy (H ) and standard deviation (σ) derived via simulation as the
characteristic parameter of the node type changes.

A.2 Single Strategy Networks

A.2.1 Mix

Threshold H σ
1 0.000 0.000
2 1.899 0.001
3 2.586 0.003
4 3.004 0.001
5 3.298 0.002
6 3.540 0.003
7 3.759 0.002
8 3.932 0.004
9 4.089 0.001
10 4.200 0.002
11 4.323 0.001
12 4.439 0.002
13 4.553 0.004
14 4.619 0.003
15 4.732 0.005
16 4.838 0.003
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A.2.2 Flood

Flood % H σ
90 4.690 0.005
80 3.601 0.007
70 2.940 0.004
60 2.428 0.005
50 2.007 0.002
40 1.619 0.004
30 1.264 0.009
20 0.906 0.006
10 0.519 0.002

A.2.3 Hide

Hidden Senders H σ
1 0.546 0.001
2 0.883 0.001
3 1.142 0.001
4 1.357 0.000
5 1.541 0.001
6 1.703 0.001
7 1.847 0.001
8 1.976 0.001

A.2.4 Drop

Drop % H σ
90 0.937 0.006
80 1.437 0.007
70 1.762 0.001
60 1.943 0.001
50 2.000 0.000
40 1.940 0.001
30 1.761 0.004
20 1.440 0.007
10 0.937 0.004
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A.2.5 Four Nodes

Mix

Four Nodes – 1 Hop

Threshold H σ
1 4.831 0.207
2 5.130 0.040
3 5.167 0.067
4 5.192 0.102
5 5.301 0.076
6 5.566 0.123
7 5.619 0.063
8 5.563 0.118
9 5.853 0.105
10 6.074 0.168
11 6.228 0.113
12 6.254 0.040
13 6.344 0.103
14 6.477 0.043
15 6.456 0.161
16 6.612 0.037

Four Nodes – 2 Hop

Threshold H σ
1 5.790 0.274
2 5.741 0.207
3 5.446 0.172
4 5.446 0.187
5 5.486 0.038
6 5.397 0.157
7 5.490 0.115
8 5.582 0.048
9 5.642 0.127
10 5.826 0.036
11 5.891 0.048
12 6.046 0.045
13 6.118 0.053
14 6.272 0.011
15 6.326 0.124
16 6.523 0.144
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Four Nodes – 3 Hop

Threshold H σ
1 5.874 0.245
2 5.802 0.229
3 5.658 0.198
4 5.677 0.139
5 5.553 0.163
6 5.583 0.091
7 5.557 0.034
8 5.689 0.029
9 5.669 0.023
10 5.800 0.064
11 5.944 0.084
12 5.844 0.100
13 6.138 0.084
14 6.245 0.099
15 6.448 0.084
16 6.550 0.049

Four Nodes – 4 Hop

Threshold H σ
1 5.788 0.309
2 5.827 0.340
3 5.610 0.070
4 5.527 0.116
5 5.423 0.045
6 5.576 0.036
7 5.619 0.111
8 5.741 0.048
9 5.749 0.009
10 5.891 0.084
11 5.954 0.051
12 6.024 0.060
13 6.254 0.165
14 6.320 0.142
15 6.401 0.067
16 6.338 0.167
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A.2.6 Four Nodes – All Hops

Threshold 1 2 3 4
H σ H σ H σ H σ

1 4.831 0.207 5.790 0.274 5.874 0.245 5.788 0.309
2 5.130 0.040 5.741 0.207 5.802 0.229 5.827 0.340
3 5.167 0.067 5.446 0.172 5.658 0.198 5.610 0.070
4 5.192 0.102 5.446 0.187 5.677 0.139 5.527 0.116
5 5.301 0.076 5.486 0.038 5.553 0.163 5.423 0.045
6 5.566 0.123 5.397 0.157 5.583 0.091 5.576 0.036
7 5.619 0.063 5.490 0.115 5.557 0.034 5.619 0.111
8 5.563 0.118 5.582 0.048 5.689 0.029 5.741 0.048
9 5.853 0.105 5.642 0.127 5.669 0.023 5.749 0.009
10 6.074 0.168 5.826 0.036 5.800 0.064 5.891 0.084
11 6.228 0.113 5.891 0.048 5.944 0.084 5.954 0.051
12 6.254 0.040 6.046 0.045 5.844 0.100 6.024 0.060
13 6.344 0.103 6.118 0.053 6.138 0.084 6.254 0.165
14 6.477 0.043 6.272 0.011 6.245 0.099 6.320 0.142
15 6.456 0.161 6.326 0.124 6.448 0.084 6.401 0.067
16 6.612 0.037 6.523 0.144 6.550 0.049 6.338 0.167

Flood

Four Nodes – 1 Hop

Flood % H σ
90 7.667 0.138
80 6.929 0.194
70 6.388 0.093
60 6.007 0.028
50 5.956 0.128
40 6.025 0.061
30 5.792 0.187
20 5.528 0.279
10 5.513 0.171
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Four Nodes – 2 Hop

Flood % H σ
90 8.591 0.052
80 7.656 0.054
70 7.200 0.074
60 6.791 0.187
50 6.767 0.151
40 6.476 0.062
30 6.326 0.135
20 5.849 0.117
10 6.123 0.162

Four Nodes – 3 Hop

Flood % H σ
90 8.856 0.048
80 7.959 0.119
70 7.580 0.157
60 7.178 0.227
50 6.800 0.054
40 6.573 0.099
30 6.544 0.212
20 6.467 0.185
10 6.144 0.214

Four Nodes – 4 Hop

Flood % H σ
90 8.939 0.058
80 8.007 0.005
70 7.511 0.008
60 7.089 0.061
50 6.857 0.067
40 6.659 0.057
30 6.333 0.062
20 6.247 0.096
10 5.978 0.173
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A.2.7 Four Nodes – All Hops

Flood % 1 2 3 4
H σ H σ H σ H σ

90 7.667 0.138 8.591 0.052 8.856 0.048 8.939 0.058
80 6.929 0.194 7.656 0.054 7.959 0.119 8.007 0.005
70 6.388 0.093 7.200 0.074 7.580 0.157 7.511 0.008
60 6.007 0.028 6.791 0.187 7.178 0.227 7.089 0.061
50 5.956 0.128 6.767 0.151 6.800 0.054 6.857 0.067
40 6.025 0.061 6.476 0.062 6.573 0.099 6.659 0.057
30 5.792 0.187 6.326 0.135 6.544 0.212 6.333 0.062
20 5.528 0.279 5.849 0.117 6.467 0.185 6.247 0.096
10 5.513 0.171 6.123 0.162 6.144 0.214 5.978 0.173

Hide

Four Nodes – 1 Hop

Hidden Senders H σ
1 4.984 0.329
2 5.543 0.211
3 5.485 0.366
4 5.683 0.306
5 5.523 0.388
6 5.835 0.223
7 5.587 0.104
8 5.788 0.302

Four Nodes – 2 Hop

Hidden Senders H σ
1 5.665 0.112
2 6.084 0.116
3 5.961 0.350
4 5.962 0.043
5 6.044 0.126
6 6.102 0.230
7 6.632 0.128
8 6.045 0.175



170 APPENDIX A. RESULTS

Four Nodes – 3 Hop

Hidden Senders H σ
1 5.675 0.245
2 6.160 0.305
3 6.191 0.064
4 6.311 0.089
5 6.495 0.196
6 6.318 0.278
7 6.652 0.083
8 6.830 0.114

Four Nodes – 4 Hop

Hidden Senders H σ
1 5.713 0.059
2 5.885 0.224
3 6.125 0.120
4 6.237 0.452
5 6.564 0.141
6 6.629 0.232
7 6.487 0.095
8 6.428 0.362

A.2.8 Four Nodes – All Hops

Senders 1 2 3 4
H σ H σ H σ H σ

1 4.984 0.329 5.665 0.112 5.675 0.245 5.713 0.059
2 5.543 0.211 6.084 0.116 6.160 0.305 5.885 0.224
3 5.485 0.366 5.961 0.350 6.191 0.064 6.125 0.120
4 5.683 0.306 5.962 0.043 6.311 0.089 6.237 0.452
5 5.523 0.388 6.044 0.126 6.495 0.196 6.564 0.141
6 5.835 0.223 6.102 0.230 6.318 0.278 6.629 0.232
7 5.587 0.104 6.632 0.128 6.652 0.083 6.487 0.095
8 5.788 0.302 6.045 0.175 6.830 0.114 6.428 0.362
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Drop

Four Nodes – 1 Hop

Drop % H σ
90 0.963 0.011
80 1.576 0.005
70 2.091 0.024
60 2.574 0.011
50 3.087 0.041
40 3.582 0.039
30 3.857 0.110
20 4.532 0.053
10 4.881 0.030

Four Nodes – 2 Hop

Drop % H σ
90 0.156 0.004
80 0.489 0.006
70 0.896 0.008
60 1.354 0.016
50 1.877 0.017
40 2.425 0.016
30 3.151 0.070
20 3.952 0.134
10 5.055 0.128

Four Nodes – 3 Hop

Drop % H σ
90 0.023 0.002
80 0.132 0.004
70 0.368 0.006
60 0.695 0.006
50 1.141 0.012
40 1.691 0.005
30 2.406 0.023
20 3.317 0.042
10 4.664 0.034
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Four Nodes – 4 Hop

Drop % H σ
90 0.003 0.001
80 0.031 0.003
70 0.132 0.003
60 0.343 0.004
50 0.678 0.008
40 1.171 0.009
30 1.837 0.006
20 2.784 0.018
10 4.107 0.085

A.2.9 Four Nodes – All Hops

Drop % 1 2 3 4
H σ H σ H σ H σ

90 0.963 0.011 0.156 0.004 0.023 0.002 0.003 0.001
80 1.576 0.005 0.489 0.006 0.132 0.004 0.031 0.003
70 2.091 0.024 0.896 0.008 0.368 0.006 0.132 0.003
60 2.574 0.011 1.354 0.016 0.695 0.006 0.343 0.004
50 3.087 0.041 1.877 0.017 1.141 0.012 0.678 0.008
40 3.582 0.039 2.425 0.016 1.691 0.005 1.171 0.009
30 3.857 0.110 3.151 0.070 2.406 0.023 1.837 0.006
20 4.532 0.053 3.952 0.134 3.317 0.042 2.784 0.018
10 4.881 0.030 5.055 0.128 4.664 0.034 4.107 0.085

A.2.10 Crowds-style

Delivery % H σ
90 5.313 0.140
80 5.683 0.110
70 5.972 0.042
60 6.222 0.029
50 6.364 0.004
40 6.513 0.019
30 6.593 0.008
20 6.660 0.004
10 6.698 0.001
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Deterministic Buffers

Number of Buffers Hops H σ
1 1 0.000 0.000
2 1 3.643 0.394
2 2 3.587 0.381
3 1 4.709 0.292
3 2 5.217 0.296
3 3 5.083 0.301
4 1 5.042 0.258
4 2 5.563 0.282
4 3 5.662 0.267
4 4 5.563 0.211

A.3 Mixed Strategy Networks

A.3.1 Mix with Flood

Node Parameters:
Mix node thresholds: 16
Flood node flooding percentage: 50

Mix Nodes Flood Nodes H σ
4 0 6.338 0.167
3 1 6.757 0.052
2 2 6.837 0.041
1 3 7.053 0.064
0 4 6.857 0.067

A.3.2 Crowds with Flood

Node Parameters:
Crowds node delivery percentage: 50
Flood node flood percentage: 50

Crowds Nodes Flood Nodes H σ
4 0 6.364 0.004
3 1 6.699 0.015
2 2 7.148 0.020
1 3 7.483 0.039
0 4 6.857 0.067
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A.3.3 Crowds with Mix

Node Parameters:

Crowds node delivery percentage: 50

Mix node threshold: 16

Crowds Nodes Mix Nodes H σ
4 0 6.364 0.004
3 1 6.540 0.004
2 2 6.628 0.030
1 3 6.639 0.025
0 4 6.338 0.167

A.4 Statistical Significance Tests

Below are the results of the statistical significance tests for each experiment.
As the parameter varied in each experiment, the Kolmogorov-Smirnov test
was applied in order to judge whether the change in parameter introduced a
significant difference between distributions.

The resulting p-value for each experimental variation is reported below.
The level of statistical significance chosen for these experiments was 99%,
allowing a 1% chance that a successful rejection of the null hypothesis was
incorrect.

The appropriate p-value for the tests below, at the 99% confidence level
and given to 3 decimal places, is 0.009. In almost every case, the experiments
rejected the null hypothesis. Those cases where this is not the case are
marked in bold.
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A.4.1 Single Mix

Parameter Change p-value
16 → 15 0.029
15 → 14 0.024
14 → 13 0.012
13 → 12 0.031
12 → 11 0.023
11 → 10 0.027
10 → 9 0.021
9 → 8 0.029
8 → 7 0.036
7 → 6 0.043
6 → 5 0.044
5 → 4 0.055
4 → 3 0.079
3 → 2 0.111
2 → 1 0.368

A.4.2 Four Mixes, 1 Hop

Parameter Change p-value
16 → 15 0.039
15 → 14 0.022
14 → 13 0.026
13 → 12 0.047
12 → 11 0.021
11 → 10 0.036
10 → 9 0.038
9 → 8 0.052
8 → 7 0.019
7 → 6 0.020
6 → 5 0.052
5 → 4 0.032
4 → 3 0.026
3 → 2 0.035
2 → 1 0.101
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A.4.3 Four Mixes, 2 Hop

Parameter Change p-value
16 → 15 0.046
15 → 14 0.018
14 → 13 0.032
13 → 12 0.013
12 → 11 0.030
11 → 10 0.020
10 → 9 0.034
9 → 8 0.015
8 → 7 0.019
7 → 6 0.018
6 → 5 0.019
5 → 4 0.024
4 → 3 0.016
3 → 2 0.059
2 → 1 0.030

A.4.4 Four Mixes, 3 Hop

Parameter Change p-value
16 → 15 0.026
15 → 14 0.044
14 → 13 0.030
13 → 12 0.051
12 → 11 0.026
11 → 10 0.027
10 → 9 0.022
9 → 8 0.010
8 → 7 0.031
7 → 6 0.007
6 → 5 0.016
5 → 4 0.018
4 → 3 0.025
3 → 2 0.023
2 → 1 0.049
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A.4.5 Four Mixes, 4 Hop

Parameter Change p-value
16 → 15 0.020
15 → 14 0.021
14 → 13 0.011
13 → 12 0.040
12 → 11 0.018
11 → 10 0.015
10 → 9 0.022
9 → 8 0.012
8 → 7 0.016
7 → 6 0.016
6 → 5 0.031
5 → 4 0.015
4 → 3 0.017
3 → 2 0.043
2 → 1 0.013

A.4.6 Single Flood

Parameter Change p-value
90 → 80 0.271
80 → 70 0.168
70 → 60 0.130
60 → 50 0.109
50 → 40 0.100
40 → 30 0.101
30 → 20 0.099
20 → 10 0.102

A.4.7 Four Flood, 1 Hop

Parameter Change p-value
90 → 80 0.088
80 → 70 0.068
70 → 60 0.056
60 → 50 0.026
50 → 40 0.020
40 → 30 0.032
30 → 20 0.059
20 → 10 0.025
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A.4.8 Four Flood, 2 Hop

Parameter Change p-value
90 → 80 0.134
80 → 70 0.074
70 → 60 0.070
60 → 50 0.010
50 → 40 0.049
40 → 30 0.033
30 → 20 0.068
20 → 10 0.050

A.4.9 Four Flood, 3 Hop

Parameter Change p-value
90 → 80 0.136
80 → 70 0.063
70 → 60 0.057
60 → 50 0.071
50 → 40 0.040
40 → 30 0.012
30 → 20 0.040
20 → 10 0.046

A.4.10 Four Flood, 4 Hop

Parameter Change p-value
90 → 80 0.146
80 → 70 0.075
70 → 60 0.071
60 → 50 0.037
50 → 40 0.033
40 → 30 0.054
30 → 20 0.011
20 → 10 0.050



A.4. STATISTICAL SIGNIFICANCE TESTS 179

A.4.11 Single Hide

Parameter Change p-value
1 → 2 0.096
2 → 3 0.077
3 → 4 0.064
4 → 5 0.052
5 → 6 0.047
6 → 7 0.038
7 → 8 0.035

A.4.12 Four Hide, 1 Hop

Parameter Change p-value
1 → 2 0.084
2 → 3 0.022
3 → 4 0.041
4 → 5 0.031
5 → 6 0.058
6 → 7 0.055
7 → 8 0.057

A.4.13 Four Hide, 2 Hop

Parameter Change p-value
1 → 2 0.072
2 → 3 0.040
3 → 4 0.036
4 → 5 0.023
5 → 6 0.029
6 → 7 0.102
7 → 8 0.125
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A.4.14 Four Hide, 3 Hop

Parameter Change p-value
1 → 2 0.092
2 → 3 0.020
3 → 4 0.020
4 → 5 0.058
5 → 6 0.062
6 → 7 0.052
7 → 8 0.044

A.4.15 Four Hide, 4 Hop

Parameter Change p-value
1 → 2 0.031
2 → 3 0.052
3 → 4 0.034
4 → 5 0.050
5 → 6 0.034
6 → 7 0.046
7 → 8 0.024

A.4.16 Four Crowds

Parameter Change p-value
90 → 80 0.055
80 → 70 0.045
70 → 60 0.044
60 → 50 0.030
50 → 40 0.032
40 → 30 0.018
30 → 20 0.017
20 → 10 0.011

A.4.17 Mix / Flood

Parameter Change p-value
4-0 → 3-1 0.070
3-1 → 2-2 0.017
2-2 → 1-3 0.037
1-3 → 0-4 0.031
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A.4.18 Crowds / Flood

Parameter Change p-value
4-0 → 3-1 0.064
3-1 → 2-2 0.070
2-2 → 1-3 0.059
1-3 → 0-4 0.121

A.4.19 Crowds / Mix

Parameter Change p-value
4-0 → 3-1 0.038
3-1 → 2-2 0.029
2-2 → 1-3 0.019
1-3 → 0-4 0.071
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